MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unixpid Structured version   Visualization version   GIF version

Theorem unixpid 6135
Description: Field of a Cartesian square. (Contributed by FL, 10-Oct-2009.)
Assertion
Ref Expression
unixpid (𝐴 × 𝐴) = 𝐴

Proof of Theorem unixpid
StepHypRef Expression
1 xpeq1 5569 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × 𝐴))
2 0xp 5649 . . . 4 (∅ × 𝐴) = ∅
31, 2syl6eq 2872 . . 3 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
4 unieq 4849 . . . . 5 ((𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = ∅)
54unieqd 4852 . . . 4 ((𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = ∅)
6 uni0 4866 . . . . . 6 ∅ = ∅
76unieqi 4851 . . . . 5 ∅ =
87, 6eqtri 2844 . . . 4 ∅ = ∅
9 eqtr 2841 . . . . 5 (( (𝐴 × 𝐴) = ∅ ∧ ∅ = ∅) → (𝐴 × 𝐴) = ∅)
10 eqtr 2841 . . . . . . 7 (( (𝐴 × 𝐴) = ∅ ∧ ∅ = 𝐴) → (𝐴 × 𝐴) = 𝐴)
1110expcom 416 . . . . . 6 (∅ = 𝐴 → ( (𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = 𝐴))
1211eqcoms 2829 . . . . 5 (𝐴 = ∅ → ( (𝐴 × 𝐴) = ∅ → (𝐴 × 𝐴) = 𝐴))
139, 12syl5com 31 . . . 4 (( (𝐴 × 𝐴) = ∅ ∧ ∅ = ∅) → (𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴))
145, 8, 13sylancl 588 . . 3 ((𝐴 × 𝐴) = ∅ → (𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴))
153, 14mpcom 38 . 2 (𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴)
16 df-ne 3017 . . 3 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
17 xpnz 6016 . . . 4 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ ∅) ↔ (𝐴 × 𝐴) ≠ ∅)
18 unixp 6133 . . . . 5 ((𝐴 × 𝐴) ≠ ∅ → (𝐴 × 𝐴) = (𝐴𝐴))
19 unidm 4128 . . . . 5 (𝐴𝐴) = 𝐴
2018, 19syl6eq 2872 . . . 4 ((𝐴 × 𝐴) ≠ ∅ → (𝐴 × 𝐴) = 𝐴)
2117, 20sylbi 219 . . 3 ((𝐴 ≠ ∅ ∧ 𝐴 ≠ ∅) → (𝐴 × 𝐴) = 𝐴)
2216, 16, 21sylancbr 602 . 2 𝐴 = ∅ → (𝐴 × 𝐴) = 𝐴)
2315, 22pm2.61i 184 1 (𝐴 × 𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wne 3016  cun 3934  c0 4291   cuni 4838   × cxp 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-dm 5565  df-rn 5566
This theorem is referenced by:  psss  17824
  Copyright terms: Public domain W3C validator