Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrreslem Structured version   Visualization version   GIF version

Theorem upgrreslem 26241
 Description: Lemma for upgrres 26243. (Contributed by AV, 27-Nov-2020.) (Revised by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
upgrres.v 𝑉 = (Vtx‘𝐺)
upgrres.e 𝐸 = (iEdg‘𝐺)
upgrres.f 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
Assertion
Ref Expression
upgrreslem ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
Distinct variable groups:   𝑖,𝐸   𝐸,𝑝   𝐺,𝑝   𝑖,𝑁   𝑁,𝑝   𝑉,𝑝
Allowed substitution hints:   𝐹(𝑖,𝑝)   𝐺(𝑖)   𝑉(𝑖)

Proof of Theorem upgrreslem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 df-ima 5156 . 2 (𝐸𝐹) = ran (𝐸𝐹)
2 fveq2 6229 . . . . . . 7 (𝑖 = 𝑗 → (𝐸𝑖) = (𝐸𝑗))
3 neleq2 2932 . . . . . . 7 ((𝐸𝑖) = (𝐸𝑗) → (𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∉ (𝐸𝑗)))
42, 3syl 17 . . . . . 6 (𝑖 = 𝑗 → (𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∉ (𝐸𝑗)))
5 upgrres.f . . . . . 6 𝐹 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
64, 5elrab2 3399 . . . . 5 (𝑗𝐹 ↔ (𝑗 ∈ dom 𝐸𝑁 ∉ (𝐸𝑗)))
7 upgrres.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
8 upgrres.e . . . . . . . 8 𝐸 = (iEdg‘𝐺)
97, 8upgrf 26026 . . . . . . 7 (𝐺 ∈ UPGraph → 𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
10 ffvelrn 6397 . . . . . . . . . 10 ((𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2} ∧ 𝑗 ∈ dom 𝐸) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
11 fveq2 6229 . . . . . . . . . . . . 13 (𝑝 = (𝐸𝑗) → (#‘𝑝) = (#‘(𝐸𝑗)))
1211breq1d 4695 . . . . . . . . . . . 12 (𝑝 = (𝐸𝑗) → ((#‘𝑝) ≤ 2 ↔ (#‘(𝐸𝑗)) ≤ 2))
1312elrab 3396 . . . . . . . . . . 11 ((𝐸𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2} ↔ ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸𝑗)) ≤ 2))
14 eldifsn 4350 . . . . . . . . . . . . . . . . . 18 ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ↔ ((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (𝐸𝑗) ≠ ∅))
15 simpl 472 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 𝑉)
16 elpwi 4201 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸𝑗) ∈ 𝒫 𝑉 → (𝐸𝑗) ⊆ 𝑉)
1716adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ⊆ 𝑉)
18 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → 𝑁 ∉ (𝐸𝑗))
19 elpwdifsn 4352 . . . . . . . . . . . . . . . . . . . . 21 (((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (𝐸𝑗) ⊆ 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
2015, 17, 18, 19syl3anc 1366 . . . . . . . . . . . . . . . . . . . 20 (((𝐸𝑗) ∈ 𝒫 𝑉𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
2120ex 449 . . . . . . . . . . . . . . . . . . 19 ((𝐸𝑗) ∈ 𝒫 𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2221adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐸𝑗) ∈ 𝒫 𝑉 ∧ (𝐸𝑗) ≠ ∅) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2314, 22sylbi 207 . . . . . . . . . . . . . . . . 17 ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2423adantr 480 . . . . . . . . . . . . . . . 16 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸𝑗)) ≤ 2) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁})))
2524imp 444 . . . . . . . . . . . . . . 15 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}))
26 eldifsni 4353 . . . . . . . . . . . . . . . . 17 ((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) → (𝐸𝑗) ≠ ∅)
2726adantr 480 . . . . . . . . . . . . . . . 16 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸𝑗)) ≤ 2) → (𝐸𝑗) ≠ ∅)
2827adantr 480 . . . . . . . . . . . . . . 15 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ≠ ∅)
29 eldifsn 4350 . . . . . . . . . . . . . . 15 ((𝐸𝑗) ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ↔ ((𝐸𝑗) ∈ 𝒫 (𝑉 ∖ {𝑁}) ∧ (𝐸𝑗) ≠ ∅))
3025, 28, 29sylanbrc 699 . . . . . . . . . . . . . 14 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}))
31 simpr 476 . . . . . . . . . . . . . . 15 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸𝑗)) ≤ 2) → (#‘(𝐸𝑗)) ≤ 2)
3231adantr 480 . . . . . . . . . . . . . 14 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (#‘(𝐸𝑗)) ≤ 2)
3312, 30, 32elrabd 3398 . . . . . . . . . . . . 13 ((((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸𝑗)) ≤ 2) ∧ 𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
3433ex 449 . . . . . . . . . . . 12 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸𝑗)) ≤ 2) → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
3534a1d 25 . . . . . . . . . . 11 (((𝐸𝑗) ∈ (𝒫 𝑉 ∖ {∅}) ∧ (#‘(𝐸𝑗)) ≤ 2) → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})))
3613, 35sylbi 207 . . . . . . . . . 10 ((𝐸𝑗) ∈ {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2} → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})))
3710, 36syl 17 . . . . . . . . 9 ((𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2} ∧ 𝑗 ∈ dom 𝐸) → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})))
3837ex 449 . . . . . . . 8 (𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2} → (𝑗 ∈ dom 𝐸 → (𝑁𝑉 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))))
3938com23 86 . . . . . . 7 (𝐸:dom 𝐸⟶{𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ (#‘𝑝) ≤ 2} → (𝑁𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))))
409, 39syl 17 . . . . . 6 (𝐺 ∈ UPGraph → (𝑁𝑉 → (𝑗 ∈ dom 𝐸 → (𝑁 ∉ (𝐸𝑗) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))))
4140imp4b 612 . . . . 5 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ((𝑗 ∈ dom 𝐸𝑁 ∉ (𝐸𝑗)) → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
426, 41syl5bi 232 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝑗𝐹 → (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
4342ralrimiv 2994 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
44 upgruhgr 26042 . . . . . 6 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
458uhgrfun 26006 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐸)
4644, 45syl 17 . . . . 5 (𝐺 ∈ UPGraph → Fun 𝐸)
4746adantr 480 . . . 4 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → Fun 𝐸)
48 ssrab2 3720 . . . . 5 {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)} ⊆ dom 𝐸
495, 48eqsstri 3668 . . . 4 𝐹 ⊆ dom 𝐸
50 funimass4 6286 . . . 4 ((Fun 𝐸𝐹 ⊆ dom 𝐸) → ((𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2} ↔ ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
5147, 49, 50sylancl 695 . . 3 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ((𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2} ↔ ∀𝑗𝐹 (𝐸𝑗) ∈ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2}))
5243, 51mpbird 247 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
531, 52syl5eqssr 3683 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → ran (𝐸𝐹) ⊆ {𝑝 ∈ (𝒫 (𝑉 ∖ {𝑁}) ∖ {∅}) ∣ (#‘𝑝) ≤ 2})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   ∉ wnel 2926  ∀wral 2941  {crab 2945   ∖ cdif 3604   ⊆ wss 3607  ∅c0 3948  𝒫 cpw 4191  {csn 4210   class class class wbr 4685  dom cdm 5143  ran crn 5144   ↾ cres 5145   “ cima 5146  Fun wfun 5920  ⟶wf 5922  ‘cfv 5926   ≤ cle 10113  2c2 11108  #chash 13157  Vtxcvtx 25919  iEdgciedg 25920  UHGraphcuhgr 25996  UPGraphcupgr 26020 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-uhgr 25998  df-upgr 26022 This theorem is referenced by:  upgrres  26243
 Copyright terms: Public domain W3C validator