MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr3g Structured version   Visualization version   GIF version

Theorem wfr3g 7953
Description: Functions defined by well-founded recursion are identical up to relation, domain, and characteristic function. (Contributed by Scott Fenton, 11-Feb-2011.)
Assertion
Ref Expression
wfr3g (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹   𝑦,𝐺   𝑦,𝐻   𝑦,𝑅

Proof of Theorem wfr3g
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 3170 . . . . . . 7 (∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))))
2 fveq2 6670 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
3 fveq2 6670 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (𝐺𝑧) = (𝐺𝑤))
42, 3eqeq12d 2837 . . . . . . . . . . 11 (𝑧 = 𝑤 → ((𝐹𝑧) = (𝐺𝑧) ↔ (𝐹𝑤) = (𝐺𝑤)))
54imbi2d 343 . . . . . . . . . 10 (𝑧 = 𝑤 → ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤))))
6 ra4v 3868 . . . . . . . . . . 11 (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
7 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
8 predeq3 6152 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑅, 𝐴, 𝑧))
98reseq2d 5853 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
109fveq2d 6674 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
117, 10eqeq12d 2837 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))))
12 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐺𝑦) = (𝐺𝑧))
138reseq2d 5853 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑧 → (𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
1413fveq2d 6674 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑧 → (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
1512, 14eqeq12d 2837 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ((𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
1611, 15anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))))
1716rspcva 3621 . . . . . . . . . . . . . . 15 ((𝑧𝐴 ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))))
18 eqtr3 2843 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
1918ancoms 461 . . . . . . . . . . . . . . . . . . 19 (((𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))))
20 eqtr3 2843 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐺𝑧))
2120ex 415 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → ((𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → (𝐹𝑧) = (𝐺𝑧)))
2219, 21syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ((𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) → (𝐹𝑧) = (𝐺𝑧)))
2322expimpd 456 . . . . . . . . . . . . . . . . 17 ((𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) → (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (𝐹𝑧) = (𝐺𝑧)))
24 predss 6155 . . . . . . . . . . . . . . . . . . . . 21 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴
25 fvreseq 6810 . . . . . . . . . . . . . . . . . . . . 21 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ Pred(𝑅, 𝐴, 𝑧) ⊆ 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2624, 25mpan2 689 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → ((𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) ↔ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)))
2726biimpar 480 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))
2827eqcomd 2827 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)) = (𝐹 ↾ Pred(𝑅, 𝐴, 𝑧)))
2928fveq2d 6674 . . . . . . . . . . . . . . . . 17 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧))) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))))
3023, 29syl11 33 . . . . . . . . . . . . . . . 16 (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (𝐹𝑧) = (𝐺𝑧)))
3130expd 418 . . . . . . . . . . . . . . 15 (((𝐹𝑧) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑧))) ∧ (𝐺𝑧) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑧)))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3217, 31syl 17 . . . . . . . . . . . . . 14 ((𝑧𝐴 ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3332ex 415 . . . . . . . . . . . . 13 (𝑧𝐴 → (∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦)))) → ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧)))))
3433impcomd 414 . . . . . . . . . . . 12 (𝑧𝐴 → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤) → (𝐹𝑧) = (𝐺𝑧))))
3534a2d 29 . . . . . . . . . . 11 (𝑧𝐴 → ((((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
366, 35syl5 34 . . . . . . . . . 10 (𝑧𝐴 → (∀𝑤 ∈ Pred (𝑅, 𝐴, 𝑧)(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑤) = (𝐺𝑤)) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧))))
375, 36wfis2g 6187 . . . . . . . . 9 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)))
38 r19.21v 3175 . . . . . . . . 9 (∀𝑧𝐴 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹𝑧) = (𝐺𝑧)) ↔ (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
3937, 38sylib 220 . . . . . . . 8 ((𝑅 We 𝐴𝑅 Se 𝐴) → (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
4039com12 32 . . . . . . 7 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ ∀𝑦𝐴 ((𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
411, 40sylan2br 596 . . . . . 6 (((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ (∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦))) ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
4241an4s 658 . . . . 5 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
4342com12 32 . . . 4 ((𝑅 We 𝐴𝑅 Se 𝐴) → (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
44433impib 1112 . . 3 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))
45 eqid 2821 . . 3 𝐴 = 𝐴
4644, 45jctil 522 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧)))
47 eqfnfv2 6803 . . . 4 ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
4847ad2ant2r 745 . . 3 (((𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
49483adant1 1126 . 2 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐴 ∧ ∀𝑧𝐴 (𝐹𝑧) = (𝐺𝑧))))
5046, 49mpbird 259 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) = (𝐻‘(𝐹 ↾ Pred(𝑅, 𝐴, 𝑦)))) ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) = (𝐻‘(𝐺 ↾ Pred(𝑅, 𝐴, 𝑦))))) → 𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wss 3936   Se wse 5512   We wwe 5513  cres 5557  Predcpred 6147   Fn wfn 6350  cfv 6355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-iota 6314  df-fun 6357  df-fn 6358  df-fv 6363
This theorem is referenced by:  wfrlem5  7959  wfr3  7975
  Copyright terms: Public domain W3C validator