Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ax10 | Unicode version |
Description: Axiom of Quantifier Substitution. Appears as Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
ax10 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wv 64 | . . . . . 6 | |
2 | wv 64 | . . . . . . . 8 | |
3 | wv 64 | . . . . . . . 8 | |
4 | 2, 3 | weqi 76 | . . . . . . 7 |
5 | weq 41 | . . . . . . . 8 | |
6 | 5, 2, 1 | wov 72 | . . . . . . . . 9 |
7 | 6 | id 25 | . . . . . . . 8 |
8 | 5, 2, 3, 7 | oveq1 99 | . . . . . . 7 |
9 | 4, 1, 8 | cla4v 152 | . . . . . 6 |
10 | 4 | ax4 150 | . . . . . . 7 |
11 | 2, 10 | eqcomi 79 | . . . . . 6 |
12 | 1, 9, 11 | eqtri 95 | . . . . 5 |
13 | 12 | alrimiv 151 | . . . 4 |
14 | wal 134 | . . . . . 6 | |
15 | 4 | wl 66 | . . . . . 6 |
16 | 14, 15 | wc 50 | . . . . 5 |
17 | 3, 2 | weqi 76 | . . . . . . 7 |
18 | 17 | wl 66 | . . . . . 6 |
19 | 3, 1 | weqi 76 | . . . . . . . . 9 |
20 | 19 | id 25 | . . . . . . . 8 |
21 | 5, 3, 2, 20 | oveq1 99 | . . . . . . 7 |
22 | 17, 21 | cbv 180 | . . . . . 6 |
23 | 14, 18, 22 | ceq2 90 | . . . . 5 |
24 | 16, 23 | a1i 28 | . . . 4 |
25 | 13, 24 | mpbir 87 | . . 3 |
26 | wtru 43 | . . 3 | |
27 | 25, 26 | adantl 56 | . 2 |
28 | 27 | ex 158 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 ke 7 kt 8 kbr 9 wffMMJ2 11 tim 121 tal 122 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |