Step | Hyp | Ref
| Expression |
1 | | wv 64 |
. . . . . 6
⊢ z:α:α |
2 | | wv 64 |
. . . . . . . 8
⊢ x:α:α |
3 | | wv 64 |
. . . . . . . 8
⊢ y:α:α |
4 | 2, 3 | weqi 76 |
. . . . . . 7
⊢ [x:α =
y:α]:∗ |
5 | | weq 41 |
. . . . . . . 8
⊢ = :(α → (α → ∗)) |
6 | 5, 2, 1 | wov 72 |
. . . . . . . . 9
⊢ [x:α =
z:α]:∗ |
7 | 6 | id 25 |
. . . . . . . 8
⊢ [x:α =
z:α]⊧[x:α =
z:α] |
8 | 5, 2, 3, 7 | oveq1 99 |
. . . . . . 7
⊢ [x:α =
z:α]⊧[[x:α =
y:α] = [z:α =
y:α]] |
9 | 4, 1, 8 | cla4v 152 |
. . . . . 6
⊢ (∀λx:α
[x:α = y:α])⊧[z:α =
y:α] |
10 | 4 | ax4 150 |
. . . . . . 7
⊢ (∀λx:α
[x:α = y:α])⊧[x:α =
y:α] |
11 | 2, 10 | eqcomi 79 |
. . . . . 6
⊢ (∀λx:α
[x:α = y:α])⊧[y:α =
x:α] |
12 | 1, 9, 11 | eqtri 95 |
. . . . 5
⊢ (∀λx:α
[x:α = y:α])⊧[z:α =
x:α] |
13 | 12 | alrimiv 151 |
. . . 4
⊢ (∀λx:α
[x:α = y:α])⊧(∀λz:α
[z:α = x:α]) |
14 | | wal 134 |
. . . . . 6
⊢ ∀:((α
→ ∗) → ∗) |
15 | 4 | wl 66 |
. . . . . 6
⊢
λx:α [x:α =
y:α]:(α → ∗) |
16 | 14, 15 | wc 50 |
. . . . 5
⊢ (∀λx:α
[x:α = y:α]):∗ |
17 | 3, 2 | weqi 76 |
. . . . . . 7
⊢ [y:α =
x:α]:∗ |
18 | 17 | wl 66 |
. . . . . 6
⊢
λy:α [y:α =
x:α]:(α → ∗) |
19 | 3, 1 | weqi 76 |
. . . . . . . . 9
⊢ [y:α =
z:α]:∗ |
20 | 19 | id 25 |
. . . . . . . 8
⊢ [y:α =
z:α]⊧[y:α =
z:α] |
21 | 5, 3, 2, 20 | oveq1 99 |
. . . . . . 7
⊢ [y:α =
z:α]⊧[[y:α =
x:α] = [z:α =
x:α]] |
22 | 17, 21 | cbv 180 |
. . . . . 6
⊢
⊤⊧[λy:α
[y:α = x:α] =
λz:α [z:α =
x:α]] |
23 | 14, 18, 22 | ceq2 90 |
. . . . 5
⊢
⊤⊧[(∀λy:α
[y:α = x:α]) =
(∀λz:α
[z:α = x:α])] |
24 | 16, 23 | a1i 28 |
. . . 4
⊢ (∀λx:α
[x:α = y:α])⊧[(∀λy:α
[y:α = x:α]) =
(∀λz:α
[z:α = x:α])] |
25 | 13, 24 | mpbir 87 |
. . 3
⊢ (∀λx:α
[x:α = y:α])⊧(∀λy:α
[y:α = x:α]) |
26 | | wtru 43 |
. . 3
⊢
⊤:∗ |
27 | 25, 26 | adantl 56 |
. 2
⊢ (⊤, (∀λx:α
[x:α = y:α]))⊧(∀λy:α
[y:α = x:α]) |
28 | 27 | ex 158 |
1
⊢
⊤⊧[(∀λx:α
[x:α = y:α])
⇒ (∀λy:α
[y:α = x:α])] |