HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  exnal1 Unicode version

Theorem exnal1 187
Description: Forward direction of exnal 201. (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypothesis
Ref Expression
alnex1.1 |- A:*
Assertion
Ref Expression
exnal1 |- (E.\x:al (~ A)) |= (~ (A.\x:al A))
Distinct variable group:   al,x

Proof of Theorem exnal1
StepHypRef Expression
1 wex 139 . . . 4 |- E.:((al -> *) -> *)
2 wnot 138 . . . . . 6 |- ~ :(* -> *)
3 alnex1.1 . . . . . 6 |- A:*
42, 3wc 50 . . . . 5 |- (~ A):*
54wl 66 . . . 4 |- \x:al (~ A):(al -> *)
61, 5wc 50 . . 3 |- (E.\x:al (~ A)):*
73notnot1 160 . . . . . 6 |- A |= (~ (~ A))
8 wtru 43 . . . . . 6 |- T.:*
97, 8adantl 56 . . . . 5 |- (T., A) |= (~ (~ A))
109alimdv 184 . . . 4 |- (T., (A.\x:al A)) |= (A.\x:al (~ (~ A)))
11 wal 134 . . . . . . 7 |- A.:((al -> *) -> *)
122, 4wc 50 . . . . . . . 8 |- (~ (~ A)):*
1312wl 66 . . . . . . 7 |- \x:al (~ (~ A)):(al -> *)
1411, 13wc 50 . . . . . 6 |- (A.\x:al (~ (~ A))):*
1514id 25 . . . . 5 |- (A.\x:al (~ (~ A))) |= (A.\x:al (~ (~ A)))
164alnex 186 . . . . . 6 |- T. |= [(A.\x:al (~ (~ A))) = (~ (E.\x:al (~ A)))]
1714, 16a1i 28 . . . . 5 |- (A.\x:al (~ (~ A))) |= [(A.\x:al (~ (~ A))) = (~ (E.\x:al (~ A)))]
1815, 17mpbi 82 . . . 4 |- (A.\x:al (~ (~ A))) |= (~ (E.\x:al (~ A)))
1910, 18syl 16 . . 3 |- (T., (A.\x:al A)) |= (~ (E.\x:al (~ A)))
206, 19con2d 161 . 2 |- (T., (E.\x:al (~ A))) |= (~ (A.\x:al A))
2120trul 39 1 |- (E.\x:al (~ A)) |= (~ (A.\x:al A))
Colors of variables: type var term
Syntax hints:   -> ht 2  *hb 3  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9  kct 10   |= wffMMJ2 11  wffMMJ2t 12  ~ tne 120  A.tal 122  E.tex 123
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-eta 177
This theorem depends on definitions:  df-ov 73  df-al 126  df-fal 127  df-an 128  df-im 129  df-not 130  df-ex 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator