Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > isfree | GIF version |
Description: Derive the metamath "is free" predicate in terms of the HOL "is free" predicate. (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
alnex1.1 | ⊢ A:∗ |
isfree.2 | ⊢ ⊤⊧[(λx:α Ay:α) = A] |
Ref | Expression |
---|---|
isfree | ⊢ ⊤⊧[A ⇒ (∀λx:α A)] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alnex1.1 | . . . . 5 ⊢ A:∗ | |
2 | 1 | id 25 | . . . 4 ⊢ A⊧A |
3 | isfree.2 | . . . 4 ⊢ ⊤⊧[(λx:α Ay:α) = A] | |
4 | 2, 3 | alrimi 182 | . . 3 ⊢ A⊧(∀λx:α A) |
5 | 3 | ax-cb1 29 | . . 3 ⊢ ⊤:∗ |
6 | 4, 5 | adantl 56 | . 2 ⊢ (⊤, A)⊧(∀λx:α A) |
7 | 6 | ex 158 | 1 ⊢ ⊤⊧[A ⇒ (∀λx:α A)] |
Colors of variables: type var term |
Syntax hints: tv 1 ∗hb 3 kc 5 λkl 6 = ke 7 ⊤kt 8 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 ⇒ tim 121 ∀tal 122 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 |
This theorem is referenced by: ax6 208 ax12 215 ax17m 218 |
Copyright terms: Public domain | W3C validator |