Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > hbc | GIF version |
Description: Hypothesis builder for combination. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
hbc.1 | ⊢ F:(β → γ) |
hbc.2 | ⊢ A:β |
hbc.3 | ⊢ B:α |
hbc.4 | ⊢ R⊧[(λx:α FB) = F] |
hbc.5 | ⊢ R⊧[(λx:α AB) = A] |
Ref | Expression |
---|---|
hbc | ⊢ R⊧[(λx:α (FA)B) = (FA)] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbc.1 | . . . . 5 ⊢ F:(β → γ) | |
2 | hbc.2 | . . . . 5 ⊢ A:β | |
3 | 1, 2 | wc 50 | . . . 4 ⊢ (FA):γ |
4 | 3 | wl 66 | . . 3 ⊢ λx:α (FA):(α → γ) |
5 | hbc.3 | . . 3 ⊢ B:α | |
6 | 4, 5 | wc 50 | . 2 ⊢ (λx:α (FA)B):γ |
7 | hbc.4 | . . . 4 ⊢ R⊧[(λx:α FB) = F] | |
8 | 7 | ax-cb1 29 | . . 3 ⊢ R:∗ |
9 | 1, 2, 5 | distrc 93 | . . 3 ⊢ ⊤⊧[(λx:α (FA)B) = ((λx:α FB)(λx:α AB))] |
10 | 8, 9 | a1i 28 | . 2 ⊢ R⊧[(λx:α (FA)B) = ((λx:α FB)(λx:α AB))] |
11 | 1 | wl 66 | . . . 4 ⊢ λx:α F:(α → (β → γ)) |
12 | 11, 5 | wc 50 | . . 3 ⊢ (λx:α FB):(β → γ) |
13 | hbc.5 | . . . 4 ⊢ R⊧[(λx:α AB) = A] | |
14 | 2, 13 | eqtypri 81 | . . 3 ⊢ (λx:α AB):β |
15 | 12, 14, 7, 13 | ceq12 88 | . 2 ⊢ R⊧[((λx:α FB)(λx:α AB)) = (FA)] |
16 | 6, 10, 15 | eqtri 95 | 1 ⊢ R⊧[(λx:α (FA)B) = (FA)] |
Colors of variables: type var term |
Syntax hints: → ht 2 kc 5 λkl 6 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-distrc 68 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: hbov 111 clf 115 exlimdv 167 cbvf 179 leqf 181 exlimd 183 alimdv 184 eximdv 185 alnex 186 exmid 199 ax5 207 ax6 208 ax7 209 ax9 212 axext 219 axrep 220 |
Copyright terms: Public domain | W3C validator |