Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > wl | GIF version |
Description: The type of a lambda abstraction. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
wl.1 | ⊢ T:β |
Ref | Expression |
---|---|
wl | ⊢ λx:α T:(α → β) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wl.1 | . 2 ⊢ T:β | |
2 | 1 | ax-wl 65 | 1 ⊢ λx:α T:(α → β) |
Colors of variables: type var term |
Syntax hints: → ht 2 λkl 6 wffMMJ2t 12 |
This theorem was proved from axioms: ax-wl 65 |
This theorem is referenced by: leq 91 beta 92 distrc 93 distrl 94 hbxfrf 107 hbc 110 hbl 112 clf 115 ovl 117 wal 134 wfal 135 wan 136 wim 137 wnot 138 wex 139 wor 140 weu 141 alval 142 exval 143 euval 144 orval 147 anval 148 ax4 150 alrimiv 151 cla4v 152 dfan2 154 olc 164 orc 165 exlimdv2 166 exlimdv 167 ax4e 168 cla4ev 169 19.8a 170 eta 178 cbvf 179 leqf 181 alrimi 182 exlimd 183 alimdv 184 eximdv 185 alnex 186 exnal1 187 ac 197 exmid 199 exnal 201 ax5 207 ax6 208 ax7 209 ax9 212 ax10 213 ax11 214 ax12 215 axext 219 axrep 220 axpow 221 axun 222 |
Copyright terms: Public domain | W3C validator |