![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sps | Unicode version |
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sps.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sps |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 1522 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | sps.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-4 1521 |
This theorem is referenced by: 19.21ht 1592 exim 1610 alexdc 1630 19.2 1649 ax10o 1726 hbae 1729 cbv1h 1757 equvini 1769 equveli 1770 ax10oe 1808 drex1 1809 drsb1 1810 exdistrfor 1811 ax11v2 1831 equs5or 1841 sbequi 1850 drsb2 1852 spsbim 1854 sbcomxyyz 1988 hbsb4t 2029 mopick 2120 eupickbi 2124 ceqsalg 2788 mo2icl 2939 reu6 2949 sbcal 3037 csbie2t 3129 dfss4st 3392 reldisj 3498 dfnfc2 3853 ssopab2 4306 eusvnfb 4485 mosubopt 4724 issref 5048 fv3 5577 fvmptt 5649 fnoprabg 6019 bj-exlimmp 15261 strcollnft 15476 |
Copyright terms: Public domain | W3C validator |