ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sps Unicode version

Theorem sps 1561
Description: Generalization of antecedent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
sps.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
sps  |-  ( A. x ph  ->  ps )

Proof of Theorem sps
StepHypRef Expression
1 sp 1535 . 2  |-  ( A. x ph  ->  ph )
2 sps.1 . 2  |-  ( ph  ->  ps )
31, 2syl 14 1  |-  ( A. x ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1534
This theorem is referenced by:  19.21ht  1605  exim  1623  alexdc  1643  19.2  1662  ax10o  1739  hbae  1742  cbv1h  1770  equvini  1782  equveli  1783  ax10oe  1821  drex1  1822  drsb1  1823  exdistrfor  1824  ax11v2  1844  equs5or  1854  sbequi  1863  drsb2  1865  spsbim  1867  sbcomxyyz  2001  hbsb4t  2042  mopick  2134  eupickbi  2138  ceqsalg  2805  mo2icl  2959  reu6  2969  sbcal  3057  csbie2t  3150  dfss4st  3414  reldisj  3520  dfnfc2  3882  ssopab2  4340  eusvnfb  4519  mosubopt  4758  issref  5084  fv3  5622  fvmptt  5694  fnoprabg  6069  bj-exlimmp  15905  strcollnft  16119
  Copyright terms: Public domain W3C validator