ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21h Unicode version

Theorem 19.21h 1550
Description: Theorem 19.21 of [Margaris] p. 90. The hypothesis can be thought of as " x is not free in  ph". New proofs should use 19.21 1576 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
Hypothesis
Ref Expression
19.21h.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
19.21h  |-  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) )

Proof of Theorem 19.21h
StepHypRef Expression
1 19.21h.1 . . 3  |-  ( ph  ->  A. x ph )
2 alim 1450 . . 3  |-  ( A. x ( ph  ->  ps )  ->  ( A. x ph  ->  A. x ps ) )
31, 2syl5 32 . 2  |-  ( A. x ( ph  ->  ps )  ->  ( ph  ->  A. x ps )
)
4 hba1 1533 . . . 4  |-  ( A. x ps  ->  A. x A. x ps )
51, 4hbim 1538 . . 3  |-  ( (
ph  ->  A. x ps )  ->  A. x ( ph  ->  A. x ps )
)
6 ax-4 1503 . . . 4  |-  ( A. x ps  ->  ps )
76imim2i 12 . . 3  |-  ( (
ph  ->  A. x ps )  ->  ( ph  ->  ps ) )
85, 7alrimih 1462 . 2  |-  ( (
ph  ->  A. x ps )  ->  A. x ( ph  ->  ps ) )
93, 8impbii 125 1  |-  ( A. x ( ph  ->  ps )  <->  ( ph  ->  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-4 1503  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  hbim1  1563  nf3  1662  19.21v  1866
  Copyright terms: Public domain W3C validator