ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21bi Unicode version

Theorem 19.21bi 1569
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.21bi.1  |-  ( ph  ->  A. x ps )
Assertion
Ref Expression
19.21bi  |-  ( ph  ->  ps )

Proof of Theorem 19.21bi
StepHypRef Expression
1 19.21bi.1 . 2  |-  ( ph  ->  A. x ps )
2 ax-4 1521 . 2  |-  ( A. x ps  ->  ps )
31, 2syl 14 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-4 1521
This theorem is referenced by:  19.21bbi  1570  ax11e  1807  eqeq1  2200  eleq2  2257  r19.21bi  2582  elrab3t  2916  ssel  3174  exmidsssn  4232  copsex2t  4275  pocl  4335  ordsucim  4533  peano2  4628  funmo  5270  funun  5299  fununi  5323  imain  5337  tfrlem3-2d  6367  tfr1onlemaccex  6403  tfri1dALT  6406  tfrcllemaccex  6416  findcard  6946  findcard2  6947  findcard2s  6948  exmidpw  6966  exmidpweq  6967  nninfctlemfo  12180
  Copyright terms: Public domain W3C validator