ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.41vvv Unicode version

Theorem 19.41vvv 1916
Description: Theorem 19.41 of [Margaris] p. 90 with 3 quantifiers. (Contributed by NM, 30-Apr-1995.)
Assertion
Ref Expression
19.41vvv  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  ( E. x E. y E. z ph  /\ 
ps ) )
Distinct variable groups:    ps, x    ps, y    ps, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem 19.41vvv
StepHypRef Expression
1 19.41vv 1915 . . 3  |-  ( E. y E. z (
ph  /\  ps )  <->  ( E. y E. z ph  /\  ps ) )
21exbii 1616 . 2  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  E. x ( E. y E. z ph  /\ 
ps ) )
3 19.41v 1914 . 2  |-  ( E. x ( E. y E. z ph  /\  ps ) 
<->  ( E. x E. y E. z ph  /\  ps ) )
42, 3bitri 184 1  |-  ( E. x E. y E. z ( ph  /\  ps )  <->  ( E. x E. y E. z ph  /\ 
ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.41vvvv  1917  eloprabga  6005  dftpos3  6315
  Copyright terms: Public domain W3C validator