| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dftpos3 | Unicode version | ||
| Description: Alternate definition of
tpos when |
| Ref | Expression |
|---|---|
| dftpos3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5105 |
. . . . . . . . . 10
| |
| 2 | dmtpos 6400 |
. . . . . . . . . . 11
| |
| 3 | 2 | releqd 4802 |
. . . . . . . . . 10
|
| 4 | 1, 3 | mpbiri 168 |
. . . . . . . . 9
|
| 5 | reltpos 6394 |
. . . . . . . . 9
| |
| 6 | 4, 5 | jctil 312 |
. . . . . . . 8
|
| 7 | relrelss 5254 |
. . . . . . . 8
| |
| 8 | 6, 7 | sylib 122 |
. . . . . . 7
|
| 9 | 8 | sseld 3223 |
. . . . . 6
|
| 10 | elvvv 4781 |
. . . . . 6
| |
| 11 | 9, 10 | imbitrdi 161 |
. . . . 5
|
| 12 | 11 | pm4.71rd 394 |
. . . 4
|
| 13 | 19.41vvv 1951 |
. . . . 5
| |
| 14 | eleq1 2292 |
. . . . . . . 8
| |
| 15 | df-br 4083 |
. . . . . . . . 9
| |
| 16 | vex 2802 |
. . . . . . . . . 10
| |
| 17 | vex 2802 |
. . . . . . . . . 10
| |
| 18 | vex 2802 |
. . . . . . . . . 10
| |
| 19 | brtposg 6398 |
. . . . . . . . . 10
| |
| 20 | 16, 17, 18, 19 | mp3an 1371 |
. . . . . . . . 9
|
| 21 | 15, 20 | bitr3i 186 |
. . . . . . . 8
|
| 22 | 14, 21 | bitrdi 196 |
. . . . . . 7
|
| 23 | 22 | pm5.32i 454 |
. . . . . 6
|
| 24 | 23 | 3exbii 1653 |
. . . . 5
|
| 25 | 13, 24 | bitr3i 186 |
. . . 4
|
| 26 | 12, 25 | bitrdi 196 |
. . 3
|
| 27 | 26 | abbi2dv 2348 |
. 2
|
| 28 | df-oprab 6004 |
. 2
| |
| 29 | 27, 28 | eqtr4di 2280 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-oprab 6004 df-tpos 6389 |
| This theorem is referenced by: tposoprab 6424 |
| Copyright terms: Public domain | W3C validator |