ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dftpos3 Unicode version

Theorem dftpos3 6159
Description: Alternate definition of tpos when  F has relational domain. Compare df-cnv 4547. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
dftpos3  |-  ( Rel 
dom  F  -> tpos  F  =  { <. <. x ,  y
>. ,  z >.  | 
<. y ,  x >. F z } )
Distinct variable group:    x, y, z, F

Proof of Theorem dftpos3
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 relcnv 4917 . . . . . . . . . 10  |-  Rel  `' dom  F
2 dmtpos 6153 . . . . . . . . . . 11  |-  ( Rel 
dom  F  ->  dom tpos  F  =  `' dom  F )
32releqd 4623 . . . . . . . . . 10  |-  ( Rel 
dom  F  ->  ( Rel 
dom tpos  F  <->  Rel  `' dom  F
) )
41, 3mpbiri 167 . . . . . . . . 9  |-  ( Rel 
dom  F  ->  Rel  dom tpos  F )
5 reltpos 6147 . . . . . . . . 9  |-  Rel tpos  F
64, 5jctil 310 . . . . . . . 8  |-  ( Rel 
dom  F  ->  ( Rel tpos  F  /\  Rel  dom tpos  F ) )
7 relrelss 5065 . . . . . . . 8  |-  ( ( Rel tpos  F  /\  Rel  dom tpos  F )  <-> tpos  F  C_  ( ( _V  X.  _V )  X. 
_V ) )
86, 7sylib 121 . . . . . . 7  |-  ( Rel 
dom  F  -> tpos  F  C_  ( ( _V  X.  _V )  X.  _V )
)
98sseld 3096 . . . . . 6  |-  ( Rel 
dom  F  ->  ( w  e. tpos  F  ->  w  e.  ( ( _V  X.  _V )  X.  _V )
) )
10 elvvv 4602 . . . . . 6  |-  ( w  e.  ( ( _V 
X.  _V )  X.  _V ) 
<->  E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >. )
119, 10syl6ib 160 . . . . 5  |-  ( Rel 
dom  F  ->  ( w  e. tpos  F  ->  E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >. ) )
1211pm4.71rd 391 . . . 4  |-  ( Rel 
dom  F  ->  ( w  e. tpos  F  <->  ( E. x E. y E. z  w  =  <. <. x ,  y >. ,  z
>.  /\  w  e. tpos  F
) ) )
13 19.41vvv 1876 . . . . 5  |-  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  w  e. tpos  F )  <-> 
( E. x E. y E. z  w  = 
<. <. x ,  y
>. ,  z >.  /\  w  e. tpos  F ) )
14 eleq1 2202 . . . . . . . 8  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e. tpos  F  <->  <. <. x ,  y >. ,  z >.  e. tpos  F
) )
15 df-br 3930 . . . . . . . . 9  |-  ( <.
x ,  y >.tpos  F z  <->  <. <. x ,  y >. ,  z
>.  e. tpos  F )
16 vex 2689 . . . . . . . . . 10  |-  x  e. 
_V
17 vex 2689 . . . . . . . . . 10  |-  y  e. 
_V
18 vex 2689 . . . . . . . . . 10  |-  z  e. 
_V
19 brtposg 6151 . . . . . . . . . 10  |-  ( ( x  e.  _V  /\  y  e.  _V  /\  z  e.  _V )  ->  ( <. x ,  y >.tpos  F z  <->  <. y ,  x >. F z ) )
2016, 17, 18, 19mp3an 1315 . . . . . . . . 9  |-  ( <.
x ,  y >.tpos  F z  <->  <. y ,  x >. F z )
2115, 20bitr3i 185 . . . . . . . 8  |-  ( <. <. x ,  y >. ,  z >.  e. tpos  F  <->  <.
y ,  x >. F z )
2214, 21syl6bb 195 . . . . . . 7  |-  ( w  =  <. <. x ,  y
>. ,  z >.  -> 
( w  e. tpos  F  <->  <.
y ,  x >. F z ) )
2322pm5.32i 449 . . . . . 6  |-  ( ( w  =  <. <. x ,  y >. ,  z
>.  /\  w  e. tpos  F
)  <->  ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
<. y ,  x >. F z ) )
24233exbii 1586 . . . . 5  |-  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\  w  e. tpos  F )  <->  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
<. y ,  x >. F z ) )
2513, 24bitr3i 185 . . . 4  |-  ( ( E. x E. y E. z  w  =  <. <. x ,  y
>. ,  z >.  /\  w  e. tpos  F )  <->  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
<. y ,  x >. F z ) )
2612, 25syl6bb 195 . . 3  |-  ( Rel 
dom  F  ->  ( w  e. tpos  F  <->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  <. y ,  x >. F z ) ) )
2726abbi2dv 2258 . 2  |-  ( Rel 
dom  F  -> tpos  F  =  { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  <. y ,  x >. F z ) } )
28 df-oprab 5778 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  <. y ,  x >. F z }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
<. y ,  x >. F z ) }
2927, 28syl6eqr 2190 1  |-  ( Rel 
dom  F  -> tpos  F  =  { <. <. x ,  y
>. ,  z >.  | 
<. y ,  x >. F z } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2125   _Vcvv 2686    C_ wss 3071   <.cop 3530   class class class wbr 3929    X. cxp 4537   `'ccnv 4538   dom cdm 4539   Rel wrel 4544   {coprab 5775  tpos ctpos 6141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131  df-oprab 5778  df-tpos 6142
This theorem is referenced by:  tposoprab  6177
  Copyright terms: Public domain W3C validator