| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dftpos3 | Unicode version | ||
| Description: Alternate definition of
tpos when |
| Ref | Expression |
|---|---|
| dftpos3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 5057 |
. . . . . . . . . 10
| |
| 2 | dmtpos 6332 |
. . . . . . . . . . 11
| |
| 3 | 2 | releqd 4757 |
. . . . . . . . . 10
|
| 4 | 1, 3 | mpbiri 168 |
. . . . . . . . 9
|
| 5 | reltpos 6326 |
. . . . . . . . 9
| |
| 6 | 4, 5 | jctil 312 |
. . . . . . . 8
|
| 7 | relrelss 5206 |
. . . . . . . 8
| |
| 8 | 6, 7 | sylib 122 |
. . . . . . 7
|
| 9 | 8 | sseld 3191 |
. . . . . 6
|
| 10 | elvvv 4736 |
. . . . . 6
| |
| 11 | 9, 10 | imbitrdi 161 |
. . . . 5
|
| 12 | 11 | pm4.71rd 394 |
. . . 4
|
| 13 | 19.41vvv 1927 |
. . . . 5
| |
| 14 | eleq1 2267 |
. . . . . . . 8
| |
| 15 | df-br 4044 |
. . . . . . . . 9
| |
| 16 | vex 2774 |
. . . . . . . . . 10
| |
| 17 | vex 2774 |
. . . . . . . . . 10
| |
| 18 | vex 2774 |
. . . . . . . . . 10
| |
| 19 | brtposg 6330 |
. . . . . . . . . 10
| |
| 20 | 16, 17, 18, 19 | mp3an 1349 |
. . . . . . . . 9
|
| 21 | 15, 20 | bitr3i 186 |
. . . . . . . 8
|
| 22 | 14, 21 | bitrdi 196 |
. . . . . . 7
|
| 23 | 22 | pm5.32i 454 |
. . . . . 6
|
| 24 | 23 | 3exbii 1629 |
. . . . 5
|
| 25 | 13, 24 | bitr3i 186 |
. . . 4
|
| 26 | 12, 25 | bitrdi 196 |
. . 3
|
| 27 | 26 | abbi2dv 2323 |
. 2
|
| 28 | df-oprab 5938 |
. 2
| |
| 29 | 27, 28 | eqtr4di 2255 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-oprab 5938 df-tpos 6321 |
| This theorem is referenced by: tposoprab 6356 |
| Copyright terms: Public domain | W3C validator |