Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dftpos3 | Unicode version |
Description: Alternate definition of tpos when has relational domain. Compare df-cnv 4612. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dftpos3 | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4982 | . . . . . . . . . 10 | |
2 | dmtpos 6224 | . . . . . . . . . . 11 tpos | |
3 | 2 | releqd 4688 | . . . . . . . . . 10 tpos |
4 | 1, 3 | mpbiri 167 | . . . . . . . . 9 tpos |
5 | reltpos 6218 | . . . . . . . . 9 tpos | |
6 | 4, 5 | jctil 310 | . . . . . . . 8 tpos tpos |
7 | relrelss 5130 | . . . . . . . 8 tpos tpos tpos | |
8 | 6, 7 | sylib 121 | . . . . . . 7 tpos |
9 | 8 | sseld 3141 | . . . . . 6 tpos |
10 | elvvv 4667 | . . . . . 6 | |
11 | 9, 10 | syl6ib 160 | . . . . 5 tpos |
12 | 11 | pm4.71rd 392 | . . . 4 tpos tpos |
13 | 19.41vvv 1892 | . . . . 5 tpos tpos | |
14 | eleq1 2229 | . . . . . . . 8 tpos tpos | |
15 | df-br 3983 | . . . . . . . . 9 tpos tpos | |
16 | vex 2729 | . . . . . . . . . 10 | |
17 | vex 2729 | . . . . . . . . . 10 | |
18 | vex 2729 | . . . . . . . . . 10 | |
19 | brtposg 6222 | . . . . . . . . . 10 tpos | |
20 | 16, 17, 18, 19 | mp3an 1327 | . . . . . . . . 9 tpos |
21 | 15, 20 | bitr3i 185 | . . . . . . . 8 tpos |
22 | 14, 21 | bitrdi 195 | . . . . . . 7 tpos |
23 | 22 | pm5.32i 450 | . . . . . 6 tpos |
24 | 23 | 3exbii 1595 | . . . . 5 tpos |
25 | 13, 24 | bitr3i 185 | . . . 4 tpos |
26 | 12, 25 | bitrdi 195 | . . 3 tpos |
27 | 26 | abbi2dv 2285 | . 2 tpos |
28 | df-oprab 5846 | . 2 | |
29 | 27, 28 | eqtr4di 2217 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cab 2151 cvv 2726 wss 3116 cop 3579 class class class wbr 3982 cxp 4602 ccnv 4603 cdm 4604 wrel 4609 coprab 5843 tpos ctpos 6212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-oprab 5846 df-tpos 6213 |
This theorem is referenced by: tposoprab 6248 |
Copyright terms: Public domain | W3C validator |