Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dftpos3 | Unicode version |
Description: Alternate definition of tpos when has relational domain. Compare df-cnv 4619. (Contributed by Mario Carneiro, 10-Sep-2015.) |
Ref | Expression |
---|---|
dftpos3 | tpos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 4989 | . . . . . . . . . 10 | |
2 | dmtpos 6235 | . . . . . . . . . . 11 tpos | |
3 | 2 | releqd 4695 | . . . . . . . . . 10 tpos |
4 | 1, 3 | mpbiri 167 | . . . . . . . . 9 tpos |
5 | reltpos 6229 | . . . . . . . . 9 tpos | |
6 | 4, 5 | jctil 310 | . . . . . . . 8 tpos tpos |
7 | relrelss 5137 | . . . . . . . 8 tpos tpos tpos | |
8 | 6, 7 | sylib 121 | . . . . . . 7 tpos |
9 | 8 | sseld 3146 | . . . . . 6 tpos |
10 | elvvv 4674 | . . . . . 6 | |
11 | 9, 10 | syl6ib 160 | . . . . 5 tpos |
12 | 11 | pm4.71rd 392 | . . . 4 tpos tpos |
13 | 19.41vvv 1897 | . . . . 5 tpos tpos | |
14 | eleq1 2233 | . . . . . . . 8 tpos tpos | |
15 | df-br 3990 | . . . . . . . . 9 tpos tpos | |
16 | vex 2733 | . . . . . . . . . 10 | |
17 | vex 2733 | . . . . . . . . . 10 | |
18 | vex 2733 | . . . . . . . . . 10 | |
19 | brtposg 6233 | . . . . . . . . . 10 tpos | |
20 | 16, 17, 18, 19 | mp3an 1332 | . . . . . . . . 9 tpos |
21 | 15, 20 | bitr3i 185 | . . . . . . . 8 tpos |
22 | 14, 21 | bitrdi 195 | . . . . . . 7 tpos |
23 | 22 | pm5.32i 451 | . . . . . 6 tpos |
24 | 23 | 3exbii 1600 | . . . . 5 tpos |
25 | 13, 24 | bitr3i 185 | . . . 4 tpos |
26 | 12, 25 | bitrdi 195 | . . 3 tpos |
27 | 26 | abbi2dv 2289 | . 2 tpos |
28 | df-oprab 5857 | . 2 | |
29 | 27, 28 | eqtr4di 2221 | 1 tpos |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cab 2156 cvv 2730 wss 3121 cop 3586 class class class wbr 3989 cxp 4609 ccnv 4610 cdm 4611 wrel 4616 coprab 5854 tpos ctpos 6223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-fv 5206 df-oprab 5857 df-tpos 6224 |
This theorem is referenced by: tposoprab 6259 |
Copyright terms: Public domain | W3C validator |