ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.41vv Unicode version

Theorem 19.41vv 1896
Description: Theorem 19.41 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 30-Apr-1995.)
Assertion
Ref Expression
19.41vv  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x E. y ph  /\  ps ) )
Distinct variable groups:    ps, x    ps, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem 19.41vv
StepHypRef Expression
1 19.41v 1895 . . 3  |-  ( E. y ( ph  /\  ps )  <->  ( E. y ph  /\  ps ) )
21exbii 1598 . 2  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( E. y ph  /\  ps ) )
3 19.41v 1895 . 2  |-  ( E. x ( E. y ph  /\  ps )  <->  ( E. x E. y ph  /\  ps ) )
42, 3bitri 183 1  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x E. y ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  19.41vvv  1897  rabxp  4648  rexiunxp  4753  mpomptx  5944  xpassen  6808  dmaddpqlem  7339  nqpi  7340  nqnq0pi  7400  nq0nn  7404
  Copyright terms: Public domain W3C validator