ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.41vv Unicode version

Theorem 19.41vv 1915
Description: Theorem 19.41 of [Margaris] p. 90 with 2 quantifiers. (Contributed by NM, 30-Apr-1995.)
Assertion
Ref Expression
19.41vv  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x E. y ph  /\  ps ) )
Distinct variable groups:    ps, x    ps, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem 19.41vv
StepHypRef Expression
1 19.41v 1914 . . 3  |-  ( E. y ( ph  /\  ps )  <->  ( E. y ph  /\  ps ) )
21exbii 1616 . 2  |-  ( E. x E. y (
ph  /\  ps )  <->  E. x ( E. y ph  /\  ps ) )
3 19.41v 1914 . 2  |-  ( E. x ( E. y ph  /\  ps )  <->  ( E. x E. y ph  /\  ps ) )
42, 3bitri 184 1  |-  ( E. x E. y (
ph  /\  ps )  <->  ( E. x E. y ph  /\  ps ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  19.41vvv  1916  rabxp  4696  rexiunxp  4804  mpomptx  6009  xpassen  6884  dmaddpqlem  7437  nqpi  7438  nqnq0pi  7498  nq0nn  7502
  Copyright terms: Public domain W3C validator