| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eloprabga | Unicode version | ||
| Description: The law of concretion for operation class abstraction. Compare elopab 4292. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.) | 
| Ref | Expression | 
|---|---|
| eloprabga.1 | 
 | 
| Ref | Expression | 
|---|---|
| eloprabga | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | 
. 2
 | |
| 2 | elex 2774 | 
. 2
 | |
| 3 | elex 2774 | 
. 2
 | |
| 4 | opexg 4261 | 
. . . . 5
 | |
| 5 | opexg 4261 | 
. . . . 5
 | |
| 6 | 4, 5 | sylan 283 | 
. . . 4
 | 
| 7 | 6 | 3impa 1196 | 
. . 3
 | 
| 8 | simpr 110 | 
. . . . . . . . . . 11
 | |
| 9 | 8 | eqeq1d 2205 | 
. . . . . . . . . 10
 | 
| 10 | eqcom 2198 | 
. . . . . . . . . . 11
 | |
| 11 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 12 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 13 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 14 | 11, 12, 13 | otth2 4274 | 
. . . . . . . . . . 11
 | 
| 15 | 10, 14 | bitri 184 | 
. . . . . . . . . 10
 | 
| 16 | 9, 15 | bitrdi 196 | 
. . . . . . . . 9
 | 
| 17 | 16 | anbi1d 465 | 
. . . . . . . 8
 | 
| 18 | eloprabga.1 | 
. . . . . . . . 9
 | |
| 19 | 18 | pm5.32i 454 | 
. . . . . . . 8
 | 
| 20 | 17, 19 | bitrdi 196 | 
. . . . . . 7
 | 
| 21 | 20 | 3exbidv 1883 | 
. . . . . 6
 | 
| 22 | df-oprab 5926 | 
. . . . . . . . . 10
 | |
| 23 | 22 | eleq2i 2263 | 
. . . . . . . . 9
 | 
| 24 | abid 2184 | 
. . . . . . . . 9
 | |
| 25 | 23, 24 | bitr2i 185 | 
. . . . . . . 8
 | 
| 26 | eleq1 2259 | 
. . . . . . . 8
 | |
| 27 | 25, 26 | bitrid 192 | 
. . . . . . 7
 | 
| 28 | 27 | adantl 277 | 
. . . . . 6
 | 
| 29 | 19.41vvv 1919 | 
. . . . . . . 8
 | |
| 30 | elisset 2777 | 
. . . . . . . . . . 11
 | |
| 31 | elisset 2777 | 
. . . . . . . . . . 11
 | |
| 32 | elisset 2777 | 
. . . . . . . . . . 11
 | |
| 33 | 30, 31, 32 | 3anim123i 1186 | 
. . . . . . . . . 10
 | 
| 34 | eeeanv 1952 | 
. . . . . . . . . 10
 | |
| 35 | 33, 34 | sylibr 134 | 
. . . . . . . . 9
 | 
| 36 | 35 | biantrurd 305 | 
. . . . . . . 8
 | 
| 37 | 29, 36 | bitr4id 199 | 
. . . . . . 7
 | 
| 38 | 37 | adantr 276 | 
. . . . . 6
 | 
| 39 | 21, 28, 38 | 3bitr3d 218 | 
. . . . 5
 | 
| 40 | 39 | expcom 116 | 
. . . 4
 | 
| 41 | 40 | vtocleg 2835 | 
. . 3
 | 
| 42 | 7, 41 | mpcom 36 | 
. 2
 | 
| 43 | 1, 2, 3, 42 | syl3an 1291 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-oprab 5926 | 
| This theorem is referenced by: eloprabg 6010 ovigg 6043 | 
| Copyright terms: Public domain | W3C validator |