ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloprabga Unicode version

Theorem eloprabga 5956
Description: The law of concretion for operation class abstraction. Compare elopab 4255. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypothesis
Ref Expression
eloprabga.1  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
eloprabga  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ps )
)
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ps, x, y, z
Allowed substitution hints:    ph( x, y, z)    V( x, y, z)    W( x, y, z)    X( x, y, z)

Proof of Theorem eloprabga
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 elex 2748 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 elex 2748 . 2  |-  ( B  e.  W  ->  B  e.  _V )
3 elex 2748 . 2  |-  ( C  e.  X  ->  C  e.  _V )
4 opexg 4225 . . . . 5  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  e. 
_V )
5 opexg 4225 . . . . 5  |-  ( (
<. A ,  B >.  e. 
_V  /\  C  e.  _V )  ->  <. <. A ,  B >. ,  C >.  e. 
_V )
64, 5sylan 283 . . . 4  |-  ( ( ( A  e.  _V  /\  B  e.  _V )  /\  C  e.  _V )  ->  <. <. A ,  B >. ,  C >.  e.  _V )
763impa 1194 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  <. <. A ,  B >. ,  C >.  e. 
_V )
8 simpr 110 . . . . . . . . . . 11  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  w  =  <. <. A ,  B >. ,  C >. )  ->  w  =  <. <. A ,  B >. ,  C >. )
98eqeq1d 2186 . . . . . . . . . 10  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  w  =  <. <. A ,  B >. ,  C >. )  ->  (
w  =  <. <. x ,  y >. ,  z
>. 
<-> 
<. <. A ,  B >. ,  C >.  =  <. <.
x ,  y >. ,  z >. )
)
10 eqcom 2179 . . . . . . . . . . 11  |-  ( <. <. A ,  B >. ,  C >.  =  <. <.
x ,  y >. ,  z >.  <->  <. <. x ,  y >. ,  z
>.  =  <. <. A ,  B >. ,  C >. )
11 vex 2740 . . . . . . . . . . . 12  |-  x  e. 
_V
12 vex 2740 . . . . . . . . . . . 12  |-  y  e. 
_V
13 vex 2740 . . . . . . . . . . . 12  |-  z  e. 
_V
1411, 12, 13otth2 4238 . . . . . . . . . . 11  |-  ( <. <. x ,  y >. ,  z >.  =  <. <. A ,  B >. ,  C >.  <->  ( x  =  A  /\  y  =  B  /\  z  =  C ) )
1510, 14bitri 184 . . . . . . . . . 10  |-  ( <. <. A ,  B >. ,  C >.  =  <. <.
x ,  y >. ,  z >.  <->  ( x  =  A  /\  y  =  B  /\  z  =  C ) )
169, 15bitrdi 196 . . . . . . . . 9  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  w  =  <. <. A ,  B >. ,  C >. )  ->  (
w  =  <. <. x ,  y >. ,  z
>. 
<->  ( x  =  A  /\  y  =  B  /\  z  =  C ) ) )
1716anbi1d 465 . . . . . . . 8  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  w  =  <. <. A ,  B >. ,  C >. )  ->  (
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) 
<->  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ph ) ) )
18 eloprabga.1 . . . . . . . . 9  |-  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  ->  ( ph  <->  ps )
)
1918pm5.32i 454 . . . . . . . 8  |-  ( ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ph )  <->  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ps )
)
2017, 19bitrdi 196 . . . . . . 7  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  w  =  <. <. A ,  B >. ,  C >. )  ->  (
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) 
<->  ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ps ) ) )
21203exbidv 1869 . . . . . 6  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  w  =  <. <. A ,  B >. ,  C >. )  ->  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ps )
) )
22 df-oprab 5873 . . . . . . . . . 10  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
2322eleq2i 2244 . . . . . . . . 9  |-  ( w  e.  { <. <. x ,  y >. ,  z
>.  |  ph }  <->  w  e.  { w  |  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) } )
24 abid 2165 . . . . . . . . 9  |-  ( w  e.  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }  <->  E. x E. y E. z ( w  =  <. <. x ,  y >. ,  z
>.  /\  ph ) )
2523, 24bitr2i 185 . . . . . . . 8  |-  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  w  e.  {
<. <. x ,  y
>. ,  z >.  | 
ph } )
26 eleq1 2240 . . . . . . . 8  |-  ( w  =  <. <. A ,  B >. ,  C >.  ->  (
w  e.  { <. <.
x ,  y >. ,  z >.  |  ph } 
<-> 
<. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph } ) )
2725, 26bitrid 192 . . . . . . 7  |-  ( w  =  <. <. A ,  B >. ,  C >.  ->  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  <. <. A ,  B >. ,  C >.  e. 
{ <. <. x ,  y
>. ,  z >.  | 
ph } ) )
2827adantl 277 . . . . . 6  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  w  =  <. <. A ,  B >. ,  C >. )  ->  ( E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )  <->  <. <. A ,  B >. ,  C >.  e. 
{ <. <. x ,  y
>. ,  z >.  | 
ph } ) )
29 19.41vvv 1904 . . . . . . . 8  |-  ( E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ps ) 
<->  ( E. x E. y E. z ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ps ) )
30 elisset 2751 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  E. x  x  =  A )
31 elisset 2751 . . . . . . . . . . 11  |-  ( B  e.  _V  ->  E. y 
y  =  B )
32 elisset 2751 . . . . . . . . . . 11  |-  ( C  e.  _V  ->  E. z 
z  =  C )
3330, 31, 323anim123i 1184 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( E. x  x  =  A  /\  E. y  y  =  B  /\  E. z  z  =  C
) )
34 eeeanv 1933 . . . . . . . . . 10  |-  ( E. x E. y E. z ( x  =  A  /\  y  =  B  /\  z  =  C )  <->  ( E. x  x  =  A  /\  E. y  y  =  B  /\  E. z 
z  =  C ) )
3533, 34sylibr 134 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  E. x E. y E. z ( x  =  A  /\  y  =  B  /\  z  =  C )
)
3635biantrurd 305 . . . . . . . 8  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( ps 
<->  ( E. x E. y E. z ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ps ) ) )
3729, 36bitr4id 199 . . . . . . 7  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ps ) 
<->  ps ) )
3837adantr 276 . . . . . 6  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  w  =  <. <. A ,  B >. ,  C >. )  ->  ( E. x E. y E. z ( ( x  =  A  /\  y  =  B  /\  z  =  C )  /\  ps ) 
<->  ps ) )
3921, 28, 383bitr3d 218 . . . . 5  |-  ( ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  /\  w  =  <. <. A ,  B >. ,  C >. )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ps )
)
4039expcom 116 . . . 4  |-  ( w  =  <. <. A ,  B >. ,  C >.  ->  (
( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ps )
) )
4140vtocleg 2808 . . 3  |-  ( <. <. A ,  B >. ,  C >.  e.  _V  ->  ( ( A  e. 
_V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( <. <. A ,  B >. ,  C >.  e. 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ps )
) )
427, 41mpcom 36 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V  /\  C  e.  _V )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ps )
)
431, 2, 3, 42syl3an 1280 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( <. <. A ,  B >. ,  C >.  e.  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   _Vcvv 2737   <.cop 3594   {coprab 5870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2739  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-oprab 5873
This theorem is referenced by:  eloprabg  5957  ovigg  5989
  Copyright terms: Public domain W3C validator