| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eloprabga | Unicode version | ||
| Description: The law of concretion for operation class abstraction. Compare elopab 4346. (Contributed by NM, 14-Sep-1999.) (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.) |
| Ref | Expression |
|---|---|
| eloprabga.1 |
|
| Ref | Expression |
|---|---|
| eloprabga |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | elex 2811 |
. 2
| |
| 3 | elex 2811 |
. 2
| |
| 4 | opexg 4314 |
. . . . 5
| |
| 5 | opexg 4314 |
. . . . 5
| |
| 6 | 4, 5 | sylan 283 |
. . . 4
|
| 7 | 6 | 3impa 1218 |
. . 3
|
| 8 | simpr 110 |
. . . . . . . . . . 11
| |
| 9 | 8 | eqeq1d 2238 |
. . . . . . . . . 10
|
| 10 | eqcom 2231 |
. . . . . . . . . . 11
| |
| 11 | vex 2802 |
. . . . . . . . . . . 12
| |
| 12 | vex 2802 |
. . . . . . . . . . . 12
| |
| 13 | vex 2802 |
. . . . . . . . . . . 12
| |
| 14 | 11, 12, 13 | otth2 4327 |
. . . . . . . . . . 11
|
| 15 | 10, 14 | bitri 184 |
. . . . . . . . . 10
|
| 16 | 9, 15 | bitrdi 196 |
. . . . . . . . 9
|
| 17 | 16 | anbi1d 465 |
. . . . . . . 8
|
| 18 | eloprabga.1 |
. . . . . . . . 9
| |
| 19 | 18 | pm5.32i 454 |
. . . . . . . 8
|
| 20 | 17, 19 | bitrdi 196 |
. . . . . . 7
|
| 21 | 20 | 3exbidv 1915 |
. . . . . 6
|
| 22 | df-oprab 6005 |
. . . . . . . . . 10
| |
| 23 | 22 | eleq2i 2296 |
. . . . . . . . 9
|
| 24 | abid 2217 |
. . . . . . . . 9
| |
| 25 | 23, 24 | bitr2i 185 |
. . . . . . . 8
|
| 26 | eleq1 2292 |
. . . . . . . 8
| |
| 27 | 25, 26 | bitrid 192 |
. . . . . . 7
|
| 28 | 27 | adantl 277 |
. . . . . 6
|
| 29 | 19.41vvv 1951 |
. . . . . . . 8
| |
| 30 | elisset 2814 |
. . . . . . . . . . 11
| |
| 31 | elisset 2814 |
. . . . . . . . . . 11
| |
| 32 | elisset 2814 |
. . . . . . . . . . 11
| |
| 33 | 30, 31, 32 | 3anim123i 1208 |
. . . . . . . . . 10
|
| 34 | eeeanv 1984 |
. . . . . . . . . 10
| |
| 35 | 33, 34 | sylibr 134 |
. . . . . . . . 9
|
| 36 | 35 | biantrurd 305 |
. . . . . . . 8
|
| 37 | 29, 36 | bitr4id 199 |
. . . . . . 7
|
| 38 | 37 | adantr 276 |
. . . . . 6
|
| 39 | 21, 28, 38 | 3bitr3d 218 |
. . . . 5
|
| 40 | 39 | expcom 116 |
. . . 4
|
| 41 | 40 | vtocleg 2874 |
. . 3
|
| 42 | 7, 41 | mpcom 36 |
. 2
|
| 43 | 1, 2, 3, 42 | syl3an 1313 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-oprab 6005 |
| This theorem is referenced by: eloprabg 6092 ovigg 6125 |
| Copyright terms: Public domain | W3C validator |