ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ralimi Unicode version

Theorem 2ralimi 2541
Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.)
Hypothesis
Ref Expression
ralimi.1  |-  ( ph  ->  ps )
Assertion
Ref Expression
2ralimi  |-  ( A. x  e.  A  A. y  e.  B  ph  ->  A. x  e.  A  A. y  e.  B  ps )

Proof of Theorem 2ralimi
StepHypRef Expression
1 ralimi.1 . . 3  |-  ( ph  ->  ps )
21ralimi 2540 . 2  |-  ( A. y  e.  B  ph  ->  A. y  e.  B  ps )
32ralimi 2540 1  |-  ( A. x  e.  A  A. y  e.  B  ph  ->  A. x  e.  A  A. y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449
This theorem depends on definitions:  df-bi 117  df-ral 2460
This theorem is referenced by:  dfgrp3me  12970  rmodislmodlem  13440  rmodislmod  13441  xmeteq0  13862  xmettri2  13864
  Copyright terms: Public domain W3C validator