ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ral2imi Unicode version

Theorem ral2imi 2472
Description: Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.)
Hypothesis
Ref Expression
ral2imi.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ral2imi  |-  ( A. x  e.  A  ph  ->  ( A. x  e.  A  ps  ->  A. x  e.  A  ch ) )

Proof of Theorem ral2imi
StepHypRef Expression
1 ral2imi.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21ralimi 2470 . 2  |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ( ps  ->  ch )
)
3 ralim 2466 . 2  |-  ( A. x  e.  A  ( ps  ->  ch )  -> 
( A. x  e.  A  ps  ->  A. x  e.  A  ch )
)
42, 3syl 14 1  |-  ( A. x  e.  A  ph  ->  ( A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-gen 1408
This theorem depends on definitions:  df-bi 116  df-ral 2396
This theorem is referenced by:  r19.26  2533  iinerm  6467  ss2ixp  6571  bj-findis  12979
  Copyright terms: Public domain W3C validator