ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmeteq0 Unicode version

Theorem xmeteq0 14946
Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmeteq0  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B )  =  0  <->  A  =  B
) )

Proof of Theorem xmeteq0
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 14930 . . . . . . 7  |-  Rel  *Met
2 relelfvdm 5631 . . . . . . 7  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
31, 2mpan 424 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
4 isxmet 14932 . . . . . 6  |-  ( X  e.  dom  *Met  ->  ( D  e.  ( *Met `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
53, 4syl 14 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
65ibi 176 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) )
7 simpl 109 . . . . 5  |-  ( ( ( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )  ->  (
( x D y )  =  0  <->  x  =  y ) )
872ralimi 2572 . . . 4  |-  ( A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )  ->  A. x  e.  X  A. y  e.  X  ( (
x D y )  =  0  <->  x  =  y ) )
96, 8simpl2im 386 . . 3  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  A. y  e.  X  ( (
x D y )  =  0  <->  x  =  y ) )
10 oveq1 5974 . . . . . 6  |-  ( x  =  A  ->  (
x D y )  =  ( A D y ) )
1110eqeq1d 2216 . . . . 5  |-  ( x  =  A  ->  (
( x D y )  =  0  <->  ( A D y )  =  0 ) )
12 eqeq1 2214 . . . . 5  |-  ( x  =  A  ->  (
x  =  y  <->  A  =  y ) )
1311, 12bibi12d 235 . . . 4  |-  ( x  =  A  ->  (
( ( x D y )  =  0  <-> 
x  =  y )  <-> 
( ( A D y )  =  0  <-> 
A  =  y ) ) )
14 oveq2 5975 . . . . . 6  |-  ( y  =  B  ->  ( A D y )  =  ( A D B ) )
1514eqeq1d 2216 . . . . 5  |-  ( y  =  B  ->  (
( A D y )  =  0  <->  ( A D B )  =  0 ) )
16 eqeq2 2217 . . . . 5  |-  ( y  =  B  ->  ( A  =  y  <->  A  =  B ) )
1715, 16bibi12d 235 . . . 4  |-  ( y  =  B  ->  (
( ( A D y )  =  0  <-> 
A  =  y )  <-> 
( ( A D B )  =  0  <-> 
A  =  B ) ) )
1813, 17rspc2v 2897 . . 3  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( ( x D y )  =  0  <->  x  =  y
)  ->  ( ( A D B )  =  0  <->  A  =  B
) ) )
199, 18syl5com 29 . 2  |-  ( D  e.  ( *Met `  X )  ->  (
( A  e.  X  /\  B  e.  X
)  ->  ( ( A D B )  =  0  <->  A  =  B
) ) )
20193impib 1204 1  |-  ( ( D  e.  ( *Met `  X )  /\  A  e.  X  /\  B  e.  X
)  ->  ( ( A D B )  =  0  <->  A  =  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   A.wral 2486   class class class wbr 4059    X. cxp 4691   dom cdm 4693   Rel wrel 4698   -->wf 5286   ` cfv 5290  (class class class)co 5967   0cc0 7960   RR*cxr 8141    <_ cle 8143   +ecxad 9927   *Metcxmet 14413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-xmet 14421
This theorem is referenced by:  meteq0  14947  xmet0  14950  xmetres2  14966  xblss2  14992  xmseq0  15055  comet  15086  xmetxp  15094
  Copyright terms: Public domain W3C validator