Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xmeteq0 | Unicode version |
Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmeteq0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetrel 13137 | . . . . . . 7 | |
2 | relelfvdm 5528 | . . . . . . 7 | |
3 | 1, 2 | mpan 422 | . . . . . 6 |
4 | isxmet 13139 | . . . . . 6 | |
5 | 3, 4 | syl 14 | . . . . 5 |
6 | 5 | ibi 175 | . . . 4 |
7 | simpl 108 | . . . . 5 | |
8 | 7 | 2ralimi 2534 | . . . 4 |
9 | 6, 8 | simpl2im 384 | . . 3 |
10 | oveq1 5860 | . . . . . 6 | |
11 | 10 | eqeq1d 2179 | . . . . 5 |
12 | eqeq1 2177 | . . . . 5 | |
13 | 11, 12 | bibi12d 234 | . . . 4 |
14 | oveq2 5861 | . . . . . 6 | |
15 | 14 | eqeq1d 2179 | . . . . 5 |
16 | eqeq2 2180 | . . . . 5 | |
17 | 15, 16 | bibi12d 234 | . . . 4 |
18 | 13, 17 | rspc2v 2847 | . . 3 |
19 | 9, 18 | syl5com 29 | . 2 |
20 | 19 | 3impib 1196 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wral 2448 class class class wbr 3989 cxp 4609 cdm 4611 wrel 4616 wf 5194 cfv 5198 (class class class)co 5853 cc0 7774 cxr 7953 cle 7955 cxad 9727 cxmet 12774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-pnf 7956 df-mnf 7957 df-xr 7958 df-xmet 12782 |
This theorem is referenced by: meteq0 13154 xmet0 13157 xmetres2 13173 xblss2 13199 xmseq0 13262 comet 13293 xmetxp 13301 |
Copyright terms: Public domain | W3C validator |