| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmeteq0 | Unicode version | ||
| Description: The value of an extended metric is zero iff its arguments are equal. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmeteq0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetrel 14815 |
. . . . . . 7
| |
| 2 | relelfvdm 5608 |
. . . . . . 7
| |
| 3 | 1, 2 | mpan 424 |
. . . . . 6
|
| 4 | isxmet 14817 |
. . . . . 6
| |
| 5 | 3, 4 | syl 14 |
. . . . 5
|
| 6 | 5 | ibi 176 |
. . . 4
|
| 7 | simpl 109 |
. . . . 5
| |
| 8 | 7 | 2ralimi 2570 |
. . . 4
|
| 9 | 6, 8 | simpl2im 386 |
. . 3
|
| 10 | oveq1 5951 |
. . . . . 6
| |
| 11 | 10 | eqeq1d 2214 |
. . . . 5
|
| 12 | eqeq1 2212 |
. . . . 5
| |
| 13 | 11, 12 | bibi12d 235 |
. . . 4
|
| 14 | oveq2 5952 |
. . . . . 6
| |
| 15 | 14 | eqeq1d 2214 |
. . . . 5
|
| 16 | eqeq2 2215 |
. . . . 5
| |
| 17 | 15, 16 | bibi12d 235 |
. . . 4
|
| 18 | 13, 17 | rspc2v 2890 |
. . 3
|
| 19 | 9, 18 | syl5com 29 |
. 2
|
| 20 | 19 | 3impib 1204 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-map 6737 df-pnf 8109 df-mnf 8110 df-xr 8111 df-xmet 14306 |
| This theorem is referenced by: meteq0 14832 xmet0 14835 xmetres2 14851 xblss2 14877 xmseq0 14940 comet 14971 xmetxp 14979 |
| Copyright terms: Public domain | W3C validator |