ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgrp3me Unicode version

Theorem dfgrp3me 12970
Description: Alternate definition of a group as a set with a closed, associative operation, for which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b  |-  B  =  ( Base `  G
)
dfgrp3.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
dfgrp3me  |-  ( G  e.  Grp  <->  ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
Distinct variable groups:    B, l, r, w, x, y, z    G, l, r, w, x, y, z    .+ , l,
r, w, x, y, z

Proof of Theorem dfgrp3me
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dfgrp3.b . . 3  |-  B  =  ( Base `  G
)
2 dfgrp3.p . . 3  |-  .+  =  ( +g  `  G )
31, 2dfgrp3m 12969 . 2  |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
4 simp2 998 . . . 4  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  E. w  w  e.  B )
5 sgrpmgm 12813 . . . . . . . . . . . . . 14  |-  ( G  e. Smgrp  ->  G  e. Mgm )
65adantr 276 . . . . . . . . . . . . 13  |-  ( ( G  e. Smgrp  /\  x  e.  B )  ->  G  e. Mgm )
76adantr 276 . . . . . . . . . . . 12  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  G  e. Mgm )
8 simpr 110 . . . . . . . . . . . . 13  |-  ( ( G  e. Smgrp  /\  x  e.  B )  ->  x  e.  B )
98adantr 276 . . . . . . . . . . . 12  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  x  e.  B )
10 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  y  e.  B )
111, 2mgmcl 12778 . . . . . . . . . . . 12  |-  ( ( G  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
127, 9, 10, 11syl3anc 1238 . . . . . . . . . . 11  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
1312adantr 276 . . . . . . . . . 10  |-  ( ( ( ( G  e. Smgrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( x  .+  y )  e.  B
)
141, 2sgrpass 12814 . . . . . . . . . . . . 13  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
15143anassrs 1229 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. Smgrp  /\  x  e.  B
)  /\  y  e.  B )  /\  z  e.  B )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
1615ralrimiva 2550 . . . . . . . . . . 11  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
1716adantr 276 . . . . . . . . . 10  |-  ( ( ( ( G  e. Smgrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
18 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( G  e. Smgrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
1913, 17, 183jca 1177 . . . . . . . . 9  |-  ( ( ( ( G  e. Smgrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
2019ex 115 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  (
( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
2120ralimdva 2544 . . . . . . 7  |-  ( ( G  e. Smgrp  /\  x  e.  B )  ->  ( A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
2221ralimdva 2544 . . . . . 6  |-  ( G  e. Smgrp  ->  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
2322a1d 22 . . . . 5  |-  ( G  e. Smgrp  ->  ( E. w  w  e.  B  ->  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) ) )
24233imp 1193 . . . 4  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
254, 24jca 306 . . 3  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
26 eleq1w 2238 . . . . . . 7  |-  ( w  =  a  ->  (
w  e.  B  <->  a  e.  B ) )
2726cbvexv 1918 . . . . . 6  |-  ( E. w  w  e.  B  <->  E. a  a  e.  B
)
28 3simpa 994 . . . . . . . . 9  |-  ( ( ( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) ) )
29282ralimi 2541 . . . . . . . 8  |-  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) ) )
301, 2issgrpn0 12811 . . . . . . . 8  |-  ( a  e.  B  ->  ( G  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) ) ) )
3129, 30imbitrrid 156 . . . . . . 7  |-  ( a  e.  B  ->  ( A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e. Smgrp )
)
3231exlimiv 1598 . . . . . 6  |-  ( E. a  a  e.  B  ->  ( A. x  e.  B  A. y  e.  B  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e. Smgrp ) )
3327, 32sylbi 121 . . . . 5  |-  ( E. w  w  e.  B  ->  ( A. x  e.  B  A. y  e.  B  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e. Smgrp ) )
3433imp 124 . . . 4  |-  ( ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  ->  G  e. Smgrp )
35 simpl 109 . . . 4  |-  ( ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  ->  E. w  w  e.  B )
36 simp3 999 . . . . . 6  |-  ( ( ( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
37362ralimi 2541 . . . . 5  |-  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
3837adantl 277 . . . 4  |-  ( ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  ->  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
3934, 35, 383jca 1177 . . 3  |-  ( ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  -> 
( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
4025, 39impbii 126 . 2  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  <-> 
( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
413, 40bitri 184 1  |-  ( G  e.  Grp  <->  ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353   E.wex 1492    e. wcel 2148   A.wral 2455   E.wrex 2456   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536  Mgmcmgm 12773  Smgrpcsgrp 12807   Grpcgrp 12877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-inn 8920  df-2 8978  df-ndx 12465  df-slot 12466  df-base 12468  df-plusg 12549  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-sbg 12882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator