Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfgrp3me | Unicode version |
Description: Alternate definition of a group as a set with a closed, associative operation, for which solutions and of the equations and exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.) |
Ref | Expression |
---|---|
dfgrp3.b | |
dfgrp3.p |
Ref | Expression |
---|---|
dfgrp3me |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfgrp3.b | . . 3 | |
2 | dfgrp3.p | . . 3 | |
3 | 1, 2 | dfgrp3m 12825 | . 2 Smgrp |
4 | simp2 996 | . . . 4 Smgrp | |
5 | sgrpmgm 12675 | . . . . . . . . . . . . . 14 Smgrp Mgm | |
6 | 5 | adantr 276 | . . . . . . . . . . . . 13 Smgrp Mgm |
7 | 6 | adantr 276 | . . . . . . . . . . . 12 Smgrp Mgm |
8 | simpr 110 | . . . . . . . . . . . . 13 Smgrp | |
9 | 8 | adantr 276 | . . . . . . . . . . . 12 Smgrp |
10 | simpr 110 | . . . . . . . . . . . 12 Smgrp | |
11 | 1, 2 | mgmcl 12640 | . . . . . . . . . . . 12 Mgm |
12 | 7, 9, 10, 11 | syl3anc 1236 | . . . . . . . . . . 11 Smgrp |
13 | 12 | adantr 276 | . . . . . . . . . 10 Smgrp |
14 | 1, 2 | sgrpass 12676 | . . . . . . . . . . . . 13 Smgrp |
15 | 14 | 3anassrs 1227 | . . . . . . . . . . . 12 Smgrp |
16 | 15 | ralrimiva 2546 | . . . . . . . . . . 11 Smgrp |
17 | 16 | adantr 276 | . . . . . . . . . 10 Smgrp |
18 | simpr 110 | . . . . . . . . . 10 Smgrp | |
19 | 13, 17, 18 | 3jca 1175 | . . . . . . . . 9 Smgrp |
20 | 19 | ex 115 | . . . . . . . 8 Smgrp |
21 | 20 | ralimdva 2540 | . . . . . . 7 Smgrp |
22 | 21 | ralimdva 2540 | . . . . . 6 Smgrp |
23 | 22 | a1d 22 | . . . . 5 Smgrp |
24 | 23 | 3imp 1191 | . . . 4 Smgrp |
25 | 4, 24 | jca 306 | . . 3 Smgrp |
26 | eleq1w 2234 | . . . . . . 7 | |
27 | 26 | cbvexv 1914 | . . . . . 6 |
28 | 3simpa 992 | . . . . . . . . 9 | |
29 | 28 | 2ralimi 2537 | . . . . . . . 8 |
30 | 1, 2 | issgrpn0 12673 | . . . . . . . 8 Smgrp |
31 | 29, 30 | syl5ibr 157 | . . . . . . 7 Smgrp |
32 | 31 | exlimiv 1594 | . . . . . 6 Smgrp |
33 | 27, 32 | sylbi 121 | . . . . 5 Smgrp |
34 | 33 | imp 124 | . . . 4 Smgrp |
35 | simpl 109 | . . . 4 | |
36 | simp3 997 | . . . . . 6 | |
37 | 36 | 2ralimi 2537 | . . . . 5 |
38 | 37 | adantl 277 | . . . 4 |
39 | 34, 35, 38 | 3jca 1175 | . . 3 Smgrp |
40 | 25, 39 | impbii 126 | . 2 Smgrp |
41 | 3, 40 | bitri 185 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 w3a 976 wceq 1351 wex 1488 wcel 2144 wral 2451 wrex 2452 cfv 5205 (class class class)co 5862 cbs 12425 cplusg 12489 Mgmcmgm 12635 Smgrpcsgrp 12669 cgrp 12735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 612 ax-in2 613 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-coll 4110 ax-sep 4113 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-setind 4527 ax-cnex 7874 ax-resscn 7875 ax-1re 7877 ax-addrcl 7880 |
This theorem depends on definitions: df-bi 117 df-3an 978 df-tru 1354 df-fal 1357 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ne 2344 df-ral 2456 df-rex 2457 df-reu 2458 df-rmo 2459 df-rab 2460 df-v 2735 df-sbc 2959 df-csb 3053 df-dif 3126 df-un 3128 df-in 3130 df-ss 3137 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-iun 3881 df-br 3996 df-opab 4057 df-mpt 4058 df-id 4284 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-ima 4630 df-iota 5167 df-fun 5207 df-fn 5208 df-f 5209 df-f1 5210 df-fo 5211 df-f1o 5212 df-fv 5213 df-riota 5818 df-ov 5865 df-oprab 5866 df-mpo 5867 df-1st 6128 df-2nd 6129 df-inn 8888 df-2 8946 df-ndx 12428 df-slot 12429 df-base 12431 df-plusg 12502 df-0g 12625 df-mgm 12637 df-sgrp 12670 df-mnd 12680 df-grp 12738 df-minusg 12739 df-sbg 12740 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |