| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfgrp3me | Unicode version | ||
| Description: Alternate definition of a
group as a set with a closed, associative
       operation, for which solutions  | 
| Ref | Expression | 
|---|---|
| dfgrp3.b | 
 | 
| dfgrp3.p | 
 | 
| Ref | Expression | 
|---|---|
| dfgrp3me | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfgrp3.b | 
. . 3
 | |
| 2 | dfgrp3.p | 
. . 3
 | |
| 3 | 1, 2 | dfgrp3m 13231 | 
. 2
 | 
| 4 | simp2 1000 | 
. . . 4
 | |
| 5 | sgrpmgm 13050 | 
. . . . . . . . . . . . . 14
 | |
| 6 | 5 | adantr 276 | 
. . . . . . . . . . . . 13
 | 
| 7 | 6 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 8 | simpr 110 | 
. . . . . . . . . . . . 13
 | |
| 9 | 8 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 10 | simpr 110 | 
. . . . . . . . . . . 12
 | |
| 11 | 1, 2 | mgmcl 13002 | 
. . . . . . . . . . . 12
 | 
| 12 | 7, 9, 10, 11 | syl3anc 1249 | 
. . . . . . . . . . 11
 | 
| 13 | 12 | adantr 276 | 
. . . . . . . . . 10
 | 
| 14 | 1, 2 | sgrpass 13051 | 
. . . . . . . . . . . . 13
 | 
| 15 | 14 | 3anassrs 1231 | 
. . . . . . . . . . . 12
 | 
| 16 | 15 | ralrimiva 2570 | 
. . . . . . . . . . 11
 | 
| 17 | 16 | adantr 276 | 
. . . . . . . . . 10
 | 
| 18 | simpr 110 | 
. . . . . . . . . 10
 | |
| 19 | 13, 17, 18 | 3jca 1179 | 
. . . . . . . . 9
 | 
| 20 | 19 | ex 115 | 
. . . . . . . 8
 | 
| 21 | 20 | ralimdva 2564 | 
. . . . . . 7
 | 
| 22 | 21 | ralimdva 2564 | 
. . . . . 6
 | 
| 23 | 22 | a1d 22 | 
. . . . 5
 | 
| 24 | 23 | 3imp 1195 | 
. . . 4
 | 
| 25 | 4, 24 | jca 306 | 
. . 3
 | 
| 26 | eleq1w 2257 | 
. . . . . . 7
 | |
| 27 | 26 | cbvexv 1933 | 
. . . . . 6
 | 
| 28 | 3simpa 996 | 
. . . . . . . . 9
 | |
| 29 | 28 | 2ralimi 2561 | 
. . . . . . . 8
 | 
| 30 | 1, 2 | issgrpn0 13048 | 
. . . . . . . 8
 | 
| 31 | 29, 30 | imbitrrid 156 | 
. . . . . . 7
 | 
| 32 | 31 | exlimiv 1612 | 
. . . . . 6
 | 
| 33 | 27, 32 | sylbi 121 | 
. . . . 5
 | 
| 34 | 33 | imp 124 | 
. . . 4
 | 
| 35 | simpl 109 | 
. . . 4
 | |
| 36 | simp3 1001 | 
. . . . . 6
 | |
| 37 | 36 | 2ralimi 2561 | 
. . . . 5
 | 
| 38 | 37 | adantl 277 | 
. . . 4
 | 
| 39 | 34, 35, 38 | 3jca 1179 | 
. . 3
 | 
| 40 | 25, 39 | impbii 126 | 
. 2
 | 
| 41 | 3, 40 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |