ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfgrp3me Unicode version

Theorem dfgrp3me 13232
Description: Alternate definition of a group as a set with a closed, associative operation, for which solutions  x and  y of the equations  ( a  .+  x )  =  b and  ( x  .+  a
)  =  b exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b  |-  B  =  ( Base `  G
)
dfgrp3.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
dfgrp3me  |-  ( G  e.  Grp  <->  ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
Distinct variable groups:    B, l, r, w, x, y, z    G, l, r, w, x, y, z    .+ , l,
r, w, x, y, z

Proof of Theorem dfgrp3me
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dfgrp3.b . . 3  |-  B  =  ( Base `  G
)
2 dfgrp3.p . . 3  |-  .+  =  ( +g  `  G )
31, 2dfgrp3m 13231 . 2  |-  ( G  e.  Grp  <->  ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
4 simp2 1000 . . . 4  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  E. w  w  e.  B )
5 sgrpmgm 13050 . . . . . . . . . . . . . 14  |-  ( G  e. Smgrp  ->  G  e. Mgm )
65adantr 276 . . . . . . . . . . . . 13  |-  ( ( G  e. Smgrp  /\  x  e.  B )  ->  G  e. Mgm )
76adantr 276 . . . . . . . . . . . 12  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  G  e. Mgm )
8 simpr 110 . . . . . . . . . . . . 13  |-  ( ( G  e. Smgrp  /\  x  e.  B )  ->  x  e.  B )
98adantr 276 . . . . . . . . . . . 12  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  x  e.  B )
10 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  y  e.  B )
111, 2mgmcl 13002 . . . . . . . . . . . 12  |-  ( ( G  e. Mgm  /\  x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
127, 9, 10, 11syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  (
x  .+  y )  e.  B )
1312adantr 276 . . . . . . . . . 10  |-  ( ( ( ( G  e. Smgrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( x  .+  y )  e.  B
)
141, 2sgrpass 13051 . . . . . . . . . . . . 13  |-  ( ( G  e. Smgrp  /\  (
x  e.  B  /\  y  e.  B  /\  z  e.  B )
)  ->  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
15143anassrs 1231 . . . . . . . . . . . 12  |-  ( ( ( ( G  e. Smgrp  /\  x  e.  B
)  /\  y  e.  B )  /\  z  e.  B )  ->  (
( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) ) )
1615ralrimiva 2570 . . . . . . . . . . 11  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) )
1716adantr 276 . . . . . . . . . 10  |-  ( ( ( ( G  e. Smgrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
18 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( G  e. Smgrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
1913, 17, 183jca 1179 . . . . . . . . 9  |-  ( ( ( ( G  e. Smgrp  /\  x  e.  B
)  /\  y  e.  B )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
2019ex 115 . . . . . . . 8  |-  ( ( ( G  e. Smgrp  /\  x  e.  B )  /\  y  e.  B )  ->  (
( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
2120ralimdva 2564 . . . . . . 7  |-  ( ( G  e. Smgrp  /\  x  e.  B )  ->  ( A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
2221ralimdva 2564 . . . . . 6  |-  ( G  e. Smgrp  ->  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
2322a1d 22 . . . . 5  |-  ( G  e. Smgrp  ->  ( E. w  w  e.  B  ->  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) ) )
24233imp 1195 . . . 4  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
254, 24jca 306 . . 3  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
26 eleq1w 2257 . . . . . . 7  |-  ( w  =  a  ->  (
w  e.  B  <->  a  e.  B ) )
2726cbvexv 1933 . . . . . 6  |-  ( E. w  w  e.  B  <->  E. a  a  e.  B
)
28 3simpa 996 . . . . . . . . 9  |-  ( ( ( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) ) ) )
29282ralimi 2561 . . . . . . . 8  |-  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) ) )
301, 2issgrpn0 13048 . . . . . . . 8  |-  ( a  e.  B  ->  ( G  e. Smgrp  <->  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) ) ) )
3129, 30imbitrrid 156 . . . . . . 7  |-  ( a  e.  B  ->  ( A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e. Smgrp )
)
3231exlimiv 1612 . . . . . 6  |-  ( E. a  a  e.  B  ->  ( A. x  e.  B  A. y  e.  B  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e. Smgrp ) )
3327, 32sylbi 121 . . . . 5  |-  ( E. w  w  e.  B  ->  ( A. x  e.  B  A. y  e.  B  ( ( x 
.+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  G  e. Smgrp ) )
3433imp 124 . . . 4  |-  ( ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  ->  G  e. Smgrp )
35 simpl 109 . . . 4  |-  ( ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  ->  E. w  w  e.  B )
36 simp3 1001 . . . . . 6  |-  ( ( ( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
37362ralimi 2561 . . . . 5  |-  ( A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
3837adantl 277 . . . 4  |-  ( ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  ->  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )
3934, 35, 383jca 1179 . . 3  |-  ( ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( (
x  .+  y )  e.  B  /\  A. z  e.  B  ( (
x  .+  y )  .+  z )  =  ( x  .+  ( y 
.+  z ) )  /\  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )  -> 
( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) )
4025, 39impbii 126 . 2  |-  ( ( G  e. Smgrp  /\  E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  <-> 
( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  (
( x  .+  y
)  e.  B  /\  A. z  e.  B  ( ( x  .+  y
)  .+  z )  =  ( x  .+  ( y  .+  z
) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
413, 40bitri 184 1  |-  ( G  e.  Grp  <->  ( E. w  w  e.  B  /\  A. x  e.  B  A. y  e.  B  ( ( x  .+  y )  e.  B  /\  A. z  e.  B  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) )  /\  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1506    e. wcel 2167   A.wral 2475   E.wrex 2476   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755  Mgmcmgm 12997  Smgrpcsgrp 13044   Grpcgrp 13132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator