| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfgrp3me | Unicode version | ||
| Description: Alternate definition of a
group as a set with a closed, associative
operation, for which solutions |
| Ref | Expression |
|---|---|
| dfgrp3.b |
|
| dfgrp3.p |
|
| Ref | Expression |
|---|---|
| dfgrp3me |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrp3.b |
. . 3
| |
| 2 | dfgrp3.p |
. . 3
| |
| 3 | 1, 2 | dfgrp3m 13632 |
. 2
|
| 4 | simp2 1022 |
. . . 4
| |
| 5 | sgrpmgm 13440 |
. . . . . . . . . . . . . 14
| |
| 6 | 5 | adantr 276 |
. . . . . . . . . . . . 13
|
| 7 | 6 | adantr 276 |
. . . . . . . . . . . 12
|
| 8 | simpr 110 |
. . . . . . . . . . . . 13
| |
| 9 | 8 | adantr 276 |
. . . . . . . . . . . 12
|
| 10 | simpr 110 |
. . . . . . . . . . . 12
| |
| 11 | 1, 2 | mgmcl 13392 |
. . . . . . . . . . . 12
|
| 12 | 7, 9, 10, 11 | syl3anc 1271 |
. . . . . . . . . . 11
|
| 13 | 12 | adantr 276 |
. . . . . . . . . 10
|
| 14 | 1, 2 | sgrpass 13441 |
. . . . . . . . . . . . 13
|
| 15 | 14 | 3anassrs 1253 |
. . . . . . . . . . . 12
|
| 16 | 15 | ralrimiva 2603 |
. . . . . . . . . . 11
|
| 17 | 16 | adantr 276 |
. . . . . . . . . 10
|
| 18 | simpr 110 |
. . . . . . . . . 10
| |
| 19 | 13, 17, 18 | 3jca 1201 |
. . . . . . . . 9
|
| 20 | 19 | ex 115 |
. . . . . . . 8
|
| 21 | 20 | ralimdva 2597 |
. . . . . . 7
|
| 22 | 21 | ralimdva 2597 |
. . . . . 6
|
| 23 | 22 | a1d 22 |
. . . . 5
|
| 24 | 23 | 3imp 1217 |
. . . 4
|
| 25 | 4, 24 | jca 306 |
. . 3
|
| 26 | eleq1w 2290 |
. . . . . . 7
| |
| 27 | 26 | cbvexv 1965 |
. . . . . 6
|
| 28 | 3simpa 1018 |
. . . . . . . . 9
| |
| 29 | 28 | 2ralimi 2594 |
. . . . . . . 8
|
| 30 | 1, 2 | issgrpn0 13438 |
. . . . . . . 8
|
| 31 | 29, 30 | imbitrrid 156 |
. . . . . . 7
|
| 32 | 31 | exlimiv 1644 |
. . . . . 6
|
| 33 | 27, 32 | sylbi 121 |
. . . . 5
|
| 34 | 33 | imp 124 |
. . . 4
|
| 35 | simpl 109 |
. . . 4
| |
| 36 | simp3 1023 |
. . . . . 6
| |
| 37 | 36 | 2ralimi 2594 |
. . . . 5
|
| 38 | 37 | adantl 277 |
. . . 4
|
| 39 | 34, 35, 38 | 3jca 1201 |
. . 3
|
| 40 | 25, 39 | impbii 126 |
. 2
|
| 41 | 3, 40 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-sbg 13538 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |