| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralimi.1 |
|
| Ref | Expression |
|---|---|
| ralimi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | ralimia 2591 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 |
| This theorem is referenced by: 2ralimi 2594 ral2imi 2595 r19.26 2657 r19.29 2668 rr19.3v 2942 rr19.28v 2943 reu3 2993 uniiunlem 3313 reupick2 3490 uniss2 3919 ss2iun 3980 iineq2 3982 iunss2 4010 disjss2 4062 disjeq2 4063 disjnim 4073 repizf 4200 abnexg 4537 reusv3i 4550 tfis 4675 ssrel2 4809 issref 5111 dmmptg 5226 funco 5358 fununi 5389 fun11uni 5391 funimaexglem 5404 fnmpt 5450 fun11iun 5593 mpteqb 5725 chfnrn 5746 dffo5 5784 ffvresb 5798 fmptcof 5802 dfmptg 5814 mpo2eqb 6114 ralrnmpo 6119 rexrnmpo 6120 uchoice 6283 fnmpo 6348 mpoexxg 6356 smores 6438 riinerm 6755 ixpm 6877 difinfinf 7268 nninfwlpoimlemginf 7343 exmidontriimlem1 7403 onntri13 7423 onntri24 7427 cc4f 7455 cc4n 7457 cauappcvgprlemdisj 7838 caucvgsrlemasr 7977 caucvgsr 7989 suplocsr 7996 rexuz3 11501 recvguniq 11506 cau3lem 11625 caubnd2 11628 rexanre 11731 climi2 11799 climi0 11800 climcaucn 11862 ndvdssub 12441 gcdsupex 12478 gcdsupcl 12479 bezoutlemmo 12527 ptex 13297 mgmidmo 13405 issubg2m 13726 eltg2b 14728 neipsm 14828 lmcvg 14891 txlm 14953 metrest 15180 mulcncflem 15281 wlkvtxeledgg 16055 upgrwlkcompim 16073 upgrwlkvtxedg 16075 bj-charfunbi 16174 bj-indint 16294 bj-indind 16295 bj-bdfindis 16310 setindis 16330 bdsetindis 16332 neap0mkv 16437 |
| Copyright terms: Public domain | W3C validator |