Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralimi | Unicode version |
Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
Ref | Expression |
---|---|
ralimi.1 |
Ref | Expression |
---|---|
ralimi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi.1 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | 2 | ralimia 2531 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 df-ral 2453 |
This theorem is referenced by: 2ralimi 2534 ral2imi 2535 r19.26 2596 r19.29 2607 rr19.3v 2869 rr19.28v 2870 reu3 2920 uniiunlem 3236 reupick2 3413 uniss2 3825 ss2iun 3886 iineq2 3888 iunss2 3916 disjss2 3967 disjeq2 3968 disjnim 3978 repizf 4103 abnexg 4429 reusv3i 4442 tfis 4565 ssrel2 4699 issref 4991 dmmptg 5106 funco 5236 fununi 5264 fun11uni 5266 funimaexglem 5279 fnmpt 5322 fun11iun 5461 mpteqb 5584 chfnrn 5604 dffo5 5642 ffvresb 5656 fmptcof 5660 dfmptg 5672 mpo2eqb 5959 ralrnmpo 5964 rexrnmpo 5965 fnmpo 6178 mpoexxg 6186 smores 6268 riinerm 6582 ixpm 6704 difinfinf 7074 exmidontriimlem1 7185 onntri13 7202 onntri24 7206 cc4f 7218 cc4n 7220 cauappcvgprlemdisj 7600 caucvgsrlemasr 7739 caucvgsr 7751 suplocsr 7758 rexuz3 10941 recvguniq 10946 cau3lem 11065 caubnd2 11068 rexanre 11171 climi2 11238 climi0 11239 climcaucn 11301 ndvdssub 11876 gcdsupex 11899 gcdsupcl 11900 bezoutlemmo 11948 mgmidmo 12612 eltg2b 12769 neipsm 12869 lmcvg 12932 txlm 12994 metrest 13221 mulcncflem 13305 bj-charfunbi 13768 bj-indint 13888 bj-indind 13889 bj-bdfindis 13904 setindis 13924 bdsetindis 13926 |
Copyright terms: Public domain | W3C validator |