| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralimi.1 |
|
| Ref | Expression |
|---|---|
| ralimi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | ralimia 2569 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 df-ral 2491 |
| This theorem is referenced by: 2ralimi 2572 ral2imi 2573 r19.26 2634 r19.29 2645 rr19.3v 2919 rr19.28v 2920 reu3 2970 uniiunlem 3290 reupick2 3467 uniss2 3895 ss2iun 3956 iineq2 3958 iunss2 3986 disjss2 4038 disjeq2 4039 disjnim 4049 repizf 4176 abnexg 4511 reusv3i 4524 tfis 4649 ssrel2 4783 issref 5084 dmmptg 5199 funco 5330 fununi 5361 fun11uni 5363 funimaexglem 5376 fnmpt 5422 fun11iun 5565 mpteqb 5693 chfnrn 5714 dffo5 5752 ffvresb 5766 fmptcof 5770 dfmptg 5782 mpo2eqb 6078 ralrnmpo 6083 rexrnmpo 6084 uchoice 6246 fnmpo 6311 mpoexxg 6319 smores 6401 riinerm 6718 ixpm 6840 difinfinf 7229 nninfwlpoimlemginf 7304 exmidontriimlem1 7364 onntri13 7384 onntri24 7388 cc4f 7416 cc4n 7418 cauappcvgprlemdisj 7799 caucvgsrlemasr 7938 caucvgsr 7950 suplocsr 7957 rexuz3 11416 recvguniq 11421 cau3lem 11540 caubnd2 11543 rexanre 11646 climi2 11714 climi0 11715 climcaucn 11777 ndvdssub 12356 gcdsupex 12393 gcdsupcl 12394 bezoutlemmo 12442 ptex 13211 mgmidmo 13319 issubg2m 13640 eltg2b 14641 neipsm 14741 lmcvg 14804 txlm 14866 metrest 15093 mulcncflem 15194 bj-charfunbi 15946 bj-indint 16066 bj-indind 16067 bj-bdfindis 16082 setindis 16102 bdsetindis 16104 neap0mkv 16210 |
| Copyright terms: Public domain | W3C validator |