| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ralimi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) | 
| Ref | Expression | 
|---|---|
| ralimi.1 | 
 | 
| Ref | Expression | 
|---|---|
| ralimi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralimi.1 | 
. . 3
 | |
| 2 | 1 | a1i 9 | 
. 2
 | 
| 3 | 2 | ralimia 2558 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 | 
| This theorem is referenced by: 2ralimi 2561 ral2imi 2562 r19.26 2623 r19.29 2634 rr19.3v 2903 rr19.28v 2904 reu3 2954 uniiunlem 3272 reupick2 3449 uniss2 3870 ss2iun 3931 iineq2 3933 iunss2 3961 disjss2 4013 disjeq2 4014 disjnim 4024 repizf 4149 abnexg 4481 reusv3i 4494 tfis 4619 ssrel2 4753 issref 5052 dmmptg 5167 funco 5298 fununi 5326 fun11uni 5328 funimaexglem 5341 fnmpt 5384 fun11iun 5525 mpteqb 5652 chfnrn 5673 dffo5 5711 ffvresb 5725 fmptcof 5729 dfmptg 5741 mpo2eqb 6032 ralrnmpo 6037 rexrnmpo 6038 uchoice 6195 fnmpo 6260 mpoexxg 6268 smores 6350 riinerm 6667 ixpm 6789 difinfinf 7167 nninfwlpoimlemginf 7242 exmidontriimlem1 7288 onntri13 7305 onntri24 7309 cc4f 7336 cc4n 7338 cauappcvgprlemdisj 7718 caucvgsrlemasr 7857 caucvgsr 7869 suplocsr 7876 rexuz3 11155 recvguniq 11160 cau3lem 11279 caubnd2 11282 rexanre 11385 climi2 11453 climi0 11454 climcaucn 11516 ndvdssub 12095 gcdsupex 12124 gcdsupcl 12125 bezoutlemmo 12173 ptex 12935 mgmidmo 13015 issubg2m 13319 eltg2b 14290 neipsm 14390 lmcvg 14453 txlm 14515 metrest 14742 mulcncflem 14843 bj-charfunbi 15457 bj-indint 15577 bj-indind 15578 bj-bdfindis 15593 setindis 15613 bdsetindis 15615 neap0mkv 15713 | 
| Copyright terms: Public domain | W3C validator |