| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralimi.1 |
|
| Ref | Expression |
|---|---|
| ralimi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | ralimia 2567 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 df-ral 2489 |
| This theorem is referenced by: 2ralimi 2570 ral2imi 2571 r19.26 2632 r19.29 2643 rr19.3v 2912 rr19.28v 2913 reu3 2963 uniiunlem 3282 reupick2 3459 uniss2 3881 ss2iun 3942 iineq2 3944 iunss2 3972 disjss2 4024 disjeq2 4025 disjnim 4035 repizf 4160 abnexg 4493 reusv3i 4506 tfis 4631 ssrel2 4765 issref 5065 dmmptg 5180 funco 5311 fununi 5342 fun11uni 5344 funimaexglem 5357 fnmpt 5402 fun11iun 5543 mpteqb 5670 chfnrn 5691 dffo5 5729 ffvresb 5743 fmptcof 5747 dfmptg 5759 mpo2eqb 6055 ralrnmpo 6060 rexrnmpo 6061 uchoice 6223 fnmpo 6288 mpoexxg 6296 smores 6378 riinerm 6695 ixpm 6817 difinfinf 7203 nninfwlpoimlemginf 7278 exmidontriimlem1 7333 onntri13 7350 onntri24 7354 cc4f 7381 cc4n 7383 cauappcvgprlemdisj 7764 caucvgsrlemasr 7903 caucvgsr 7915 suplocsr 7922 rexuz3 11301 recvguniq 11306 cau3lem 11425 caubnd2 11428 rexanre 11531 climi2 11599 climi0 11600 climcaucn 11662 ndvdssub 12241 gcdsupex 12278 gcdsupcl 12279 bezoutlemmo 12327 ptex 13096 mgmidmo 13204 issubg2m 13525 eltg2b 14526 neipsm 14626 lmcvg 14689 txlm 14751 metrest 14978 mulcncflem 15079 bj-charfunbi 15747 bj-indint 15867 bj-indind 15868 bj-bdfindis 15883 setindis 15903 bdsetindis 15905 neap0mkv 16008 |
| Copyright terms: Public domain | W3C validator |