| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralimi.1 |
|
| Ref | Expression |
|---|---|
| ralimi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | ralimia 2567 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 df-ral 2489 |
| This theorem is referenced by: 2ralimi 2570 ral2imi 2571 r19.26 2632 r19.29 2643 rr19.3v 2912 rr19.28v 2913 reu3 2963 uniiunlem 3282 reupick2 3459 uniss2 3881 ss2iun 3942 iineq2 3944 iunss2 3972 disjss2 4024 disjeq2 4025 disjnim 4035 repizf 4161 abnexg 4494 reusv3i 4507 tfis 4632 ssrel2 4766 issref 5066 dmmptg 5181 funco 5312 fununi 5343 fun11uni 5345 funimaexglem 5358 fnmpt 5404 fun11iun 5545 mpteqb 5672 chfnrn 5693 dffo5 5731 ffvresb 5745 fmptcof 5749 dfmptg 5761 mpo2eqb 6057 ralrnmpo 6062 rexrnmpo 6063 uchoice 6225 fnmpo 6290 mpoexxg 6298 smores 6380 riinerm 6697 ixpm 6819 difinfinf 7205 nninfwlpoimlemginf 7280 exmidontriimlem1 7335 onntri13 7352 onntri24 7356 cc4f 7383 cc4n 7385 cauappcvgprlemdisj 7766 caucvgsrlemasr 7905 caucvgsr 7917 suplocsr 7924 rexuz3 11334 recvguniq 11339 cau3lem 11458 caubnd2 11461 rexanre 11564 climi2 11632 climi0 11633 climcaucn 11695 ndvdssub 12274 gcdsupex 12311 gcdsupcl 12312 bezoutlemmo 12360 ptex 13129 mgmidmo 13237 issubg2m 13558 eltg2b 14559 neipsm 14659 lmcvg 14722 txlm 14784 metrest 15011 mulcncflem 15112 bj-charfunbi 15784 bj-indint 15904 bj-indind 15905 bj-bdfindis 15920 setindis 15940 bdsetindis 15942 neap0mkv 16045 |
| Copyright terms: Public domain | W3C validator |