| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralimi | Unicode version | ||
| Description: Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralimi.1 |
|
| Ref | Expression |
|---|---|
| ralimi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimi.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | 2 | ralimia 2558 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: 2ralimi 2561 ral2imi 2562 r19.26 2623 r19.29 2634 rr19.3v 2903 rr19.28v 2904 reu3 2954 uniiunlem 3273 reupick2 3450 uniss2 3871 ss2iun 3932 iineq2 3934 iunss2 3962 disjss2 4014 disjeq2 4015 disjnim 4025 repizf 4150 abnexg 4482 reusv3i 4495 tfis 4620 ssrel2 4754 issref 5053 dmmptg 5168 funco 5299 fununi 5327 fun11uni 5329 funimaexglem 5342 fnmpt 5387 fun11iun 5528 mpteqb 5655 chfnrn 5676 dffo5 5714 ffvresb 5728 fmptcof 5732 dfmptg 5744 mpo2eqb 6036 ralrnmpo 6041 rexrnmpo 6042 uchoice 6204 fnmpo 6269 mpoexxg 6277 smores 6359 riinerm 6676 ixpm 6798 difinfinf 7176 nninfwlpoimlemginf 7251 exmidontriimlem1 7304 onntri13 7321 onntri24 7325 cc4f 7352 cc4n 7354 cauappcvgprlemdisj 7735 caucvgsrlemasr 7874 caucvgsr 7886 suplocsr 7893 rexuz3 11172 recvguniq 11177 cau3lem 11296 caubnd2 11299 rexanre 11402 climi2 11470 climi0 11471 climcaucn 11533 ndvdssub 12112 gcdsupex 12149 gcdsupcl 12150 bezoutlemmo 12198 ptex 12966 mgmidmo 13074 issubg2m 13395 eltg2b 14374 neipsm 14474 lmcvg 14537 txlm 14599 metrest 14826 mulcncflem 14927 bj-charfunbi 15541 bj-indint 15661 bj-indind 15662 bj-bdfindis 15677 setindis 15697 bdsetindis 15699 neap0mkv 15800 |
| Copyright terms: Public domain | W3C validator |