ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettri2 Unicode version

Theorem xmettri2 13076
Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettri2  |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )

Proof of Theorem xmettri2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 13058 . . . . . . . 8  |-  Rel  *Met
2 relelfvdm 5526 . . . . . . . 8  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
31, 2mpan 422 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
4 isxmet 13060 . . . . . . 7  |-  ( X  e.  dom  *Met  ->  ( D  e.  ( *Met `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
53, 4syl 14 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
65ibi 175 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) )
7 simpr 109 . . . . . 6  |-  ( ( ( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )  ->  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
872ralimi 2534 . . . . 5  |-  ( A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
96, 8simpl2im 384 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
10 oveq1 5857 . . . . . 6  |-  ( x  =  A  ->  (
x D y )  =  ( A D y ) )
11 oveq2 5858 . . . . . . 7  |-  ( x  =  A  ->  (
z D x )  =  ( z D A ) )
1211oveq1d 5865 . . . . . 6  |-  ( x  =  A  ->  (
( z D x ) +e ( z D y ) )  =  ( ( z D A ) +e ( z D y ) ) )
1310, 12breq12d 4000 . . . . 5  |-  ( x  =  A  ->  (
( x D y )  <_  ( (
z D x ) +e ( z D y ) )  <-> 
( A D y )  <_  ( (
z D A ) +e ( z D y ) ) ) )
14 oveq2 5858 . . . . . 6  |-  ( y  =  B  ->  ( A D y )  =  ( A D B ) )
15 oveq2 5858 . . . . . . 7  |-  ( y  =  B  ->  (
z D y )  =  ( z D B ) )
1615oveq2d 5866 . . . . . 6  |-  ( y  =  B  ->  (
( z D A ) +e ( z D y ) )  =  ( ( z D A ) +e ( z D B ) ) )
1714, 16breq12d 4000 . . . . 5  |-  ( y  =  B  ->  (
( A D y )  <_  ( (
z D A ) +e ( z D y ) )  <-> 
( A D B )  <_  ( (
z D A ) +e ( z D B ) ) ) )
18 oveq1 5857 . . . . . . 7  |-  ( z  =  C  ->  (
z D A )  =  ( C D A ) )
19 oveq1 5857 . . . . . . 7  |-  ( z  =  C  ->  (
z D B )  =  ( C D B ) )
2018, 19oveq12d 5868 . . . . . 6  |-  ( z  =  C  ->  (
( z D A ) +e ( z D B ) )  =  ( ( C D A ) +e ( C D B ) ) )
2120breq2d 3999 . . . . 5  |-  ( z  =  C  ->  (
( A D B )  <_  ( (
z D A ) +e ( z D B ) )  <-> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) ) )
2213, 17, 21rspc3v 2850 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) )  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
239, 22syl5 32 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( D  e.  ( *Met `  X
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
24233comr 1206 . 2  |-  ( ( C  e.  X  /\  A  e.  X  /\  B  e.  X )  ->  ( D  e.  ( *Met `  X
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
2524impcom 124 1  |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   A.wral 2448   class class class wbr 3987    X. cxp 4607   dom cdm 4609   Rel wrel 4614   -->wf 5192   ` cfv 5196  (class class class)co 5850   0cc0 7761   RR*cxr 7940    <_ cle 7942   +ecxad 9714   *Metcxmet 12695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-map 6624  df-pnf 7943  df-mnf 7944  df-xr 7945  df-xmet 12703
This theorem is referenced by:  mettri2  13077  xmetge0  13080  xmetsym  13083  xmetpsmet  13084  xmettri  13087  xmetres2  13094  xblss2  13120  xmstri2  13185  comet  13214  xmetxp  13222
  Copyright terms: Public domain W3C validator