| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xmettri2 | Unicode version | ||
| Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmettri2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetrel 14930 |
. . . . . . . 8
| |
| 2 | relelfvdm 5631 |
. . . . . . . 8
| |
| 3 | 1, 2 | mpan 424 |
. . . . . . 7
|
| 4 | isxmet 14932 |
. . . . . . 7
| |
| 5 | 3, 4 | syl 14 |
. . . . . 6
|
| 6 | 5 | ibi 176 |
. . . . 5
|
| 7 | simpr 110 |
. . . . . 6
| |
| 8 | 7 | 2ralimi 2572 |
. . . . 5
|
| 9 | 6, 8 | simpl2im 386 |
. . . 4
|
| 10 | oveq1 5974 |
. . . . . 6
| |
| 11 | oveq2 5975 |
. . . . . . 7
| |
| 12 | 11 | oveq1d 5982 |
. . . . . 6
|
| 13 | 10, 12 | breq12d 4072 |
. . . . 5
|
| 14 | oveq2 5975 |
. . . . . 6
| |
| 15 | oveq2 5975 |
. . . . . . 7
| |
| 16 | 15 | oveq2d 5983 |
. . . . . 6
|
| 17 | 14, 16 | breq12d 4072 |
. . . . 5
|
| 18 | oveq1 5974 |
. . . . . . 7
| |
| 19 | oveq1 5974 |
. . . . . . 7
| |
| 20 | 18, 19 | oveq12d 5985 |
. . . . . 6
|
| 21 | 20 | breq2d 4071 |
. . . . 5
|
| 22 | 13, 17, 21 | rspc3v 2900 |
. . . 4
|
| 23 | 9, 22 | syl5 32 |
. . 3
|
| 24 | 23 | 3comr 1214 |
. 2
|
| 25 | 24 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-pnf 8144 df-mnf 8145 df-xr 8146 df-xmet 14421 |
| This theorem is referenced by: mettri2 14949 xmetge0 14952 xmetsym 14955 xmetpsmet 14956 xmettri 14959 xmetres2 14966 xblss2 14992 xmstri2 15057 comet 15086 xmetxp 15094 |
| Copyright terms: Public domain | W3C validator |