ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettri2 Unicode version

Theorem xmettri2 14313
Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettri2  |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )

Proof of Theorem xmettri2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 14295 . . . . . . . 8  |-  Rel  *Met
2 relelfvdm 5566 . . . . . . . 8  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
31, 2mpan 424 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
4 isxmet 14297 . . . . . . 7  |-  ( X  e.  dom  *Met  ->  ( D  e.  ( *Met `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
53, 4syl 14 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
65ibi 176 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) )
7 simpr 110 . . . . . 6  |-  ( ( ( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )  ->  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
872ralimi 2554 . . . . 5  |-  ( A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
96, 8simpl2im 386 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
10 oveq1 5902 . . . . . 6  |-  ( x  =  A  ->  (
x D y )  =  ( A D y ) )
11 oveq2 5903 . . . . . . 7  |-  ( x  =  A  ->  (
z D x )  =  ( z D A ) )
1211oveq1d 5910 . . . . . 6  |-  ( x  =  A  ->  (
( z D x ) +e ( z D y ) )  =  ( ( z D A ) +e ( z D y ) ) )
1310, 12breq12d 4031 . . . . 5  |-  ( x  =  A  ->  (
( x D y )  <_  ( (
z D x ) +e ( z D y ) )  <-> 
( A D y )  <_  ( (
z D A ) +e ( z D y ) ) ) )
14 oveq2 5903 . . . . . 6  |-  ( y  =  B  ->  ( A D y )  =  ( A D B ) )
15 oveq2 5903 . . . . . . 7  |-  ( y  =  B  ->  (
z D y )  =  ( z D B ) )
1615oveq2d 5911 . . . . . 6  |-  ( y  =  B  ->  (
( z D A ) +e ( z D y ) )  =  ( ( z D A ) +e ( z D B ) ) )
1714, 16breq12d 4031 . . . . 5  |-  ( y  =  B  ->  (
( A D y )  <_  ( (
z D A ) +e ( z D y ) )  <-> 
( A D B )  <_  ( (
z D A ) +e ( z D B ) ) ) )
18 oveq1 5902 . . . . . . 7  |-  ( z  =  C  ->  (
z D A )  =  ( C D A ) )
19 oveq1 5902 . . . . . . 7  |-  ( z  =  C  ->  (
z D B )  =  ( C D B ) )
2018, 19oveq12d 5913 . . . . . 6  |-  ( z  =  C  ->  (
( z D A ) +e ( z D B ) )  =  ( ( C D A ) +e ( C D B ) ) )
2120breq2d 4030 . . . . 5  |-  ( z  =  C  ->  (
( A D B )  <_  ( (
z D A ) +e ( z D B ) )  <-> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) ) )
2213, 17, 21rspc3v 2872 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) )  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
239, 22syl5 32 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( D  e.  ( *Met `  X
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
24233comr 1213 . 2  |-  ( ( C  e.  X  /\  A  e.  X  /\  B  e.  X )  ->  ( D  e.  ( *Met `  X
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
2524impcom 125 1  |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   class class class wbr 4018    X. cxp 4642   dom cdm 4644   Rel wrel 4649   -->wf 5231   ` cfv 5235  (class class class)co 5895   0cc0 7840   RR*cxr 8020    <_ cle 8022   +ecxad 9799   *Metcxmet 13846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-map 6675  df-pnf 8023  df-mnf 8024  df-xr 8025  df-xmet 13854
This theorem is referenced by:  mettri2  14314  xmetge0  14317  xmetsym  14320  xmetpsmet  14321  xmettri  14324  xmetres2  14331  xblss2  14357  xmstri2  14422  comet  14451  xmetxp  14459
  Copyright terms: Public domain W3C validator