ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettri2 Unicode version

Theorem xmettri2 13001
Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettri2  |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )

Proof of Theorem xmettri2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xmetrel 12983 . . . . . . . 8  |-  Rel  *Met
2 relelfvdm 5518 . . . . . . . 8  |-  ( ( Rel  *Met  /\  D  e.  ( *Met `  X ) )  ->  X  e.  dom  *Met )
31, 2mpan 421 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  X  e.  dom  *Met )
4 isxmet 12985 . . . . . . 7  |-  ( X  e.  dom  *Met  ->  ( D  e.  ( *Met `  X
)  <->  ( D :
( X  X.  X
) --> RR*  /\  A. x  e.  X  A. y  e.  X  ( (
( x D y )  =  0  <->  x  =  y )  /\  A. z  e.  X  ( x D y )  <_  ( ( z D x ) +e ( z D y ) ) ) ) ) )
53, 4syl 14 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  ( D  e.  ( *Met `  X )  <->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) ) )
65ibi 175 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  ( D : ( X  X.  X ) --> RR*  /\  A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) ) ) )
7 simpr 109 . . . . . 6  |-  ( ( ( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )  ->  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
872ralimi 2530 . . . . 5  |-  ( A. x  e.  X  A. y  e.  X  (
( ( x D y )  =  0  <-> 
x  =  y )  /\  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) ) )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
96, 8simpl2im 384 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_ 
( ( z D x ) +e
( z D y ) ) )
10 oveq1 5849 . . . . . 6  |-  ( x  =  A  ->  (
x D y )  =  ( A D y ) )
11 oveq2 5850 . . . . . . 7  |-  ( x  =  A  ->  (
z D x )  =  ( z D A ) )
1211oveq1d 5857 . . . . . 6  |-  ( x  =  A  ->  (
( z D x ) +e ( z D y ) )  =  ( ( z D A ) +e ( z D y ) ) )
1310, 12breq12d 3995 . . . . 5  |-  ( x  =  A  ->  (
( x D y )  <_  ( (
z D x ) +e ( z D y ) )  <-> 
( A D y )  <_  ( (
z D A ) +e ( z D y ) ) ) )
14 oveq2 5850 . . . . . 6  |-  ( y  =  B  ->  ( A D y )  =  ( A D B ) )
15 oveq2 5850 . . . . . . 7  |-  ( y  =  B  ->  (
z D y )  =  ( z D B ) )
1615oveq2d 5858 . . . . . 6  |-  ( y  =  B  ->  (
( z D A ) +e ( z D y ) )  =  ( ( z D A ) +e ( z D B ) ) )
1714, 16breq12d 3995 . . . . 5  |-  ( y  =  B  ->  (
( A D y )  <_  ( (
z D A ) +e ( z D y ) )  <-> 
( A D B )  <_  ( (
z D A ) +e ( z D B ) ) ) )
18 oveq1 5849 . . . . . . 7  |-  ( z  =  C  ->  (
z D A )  =  ( C D A ) )
19 oveq1 5849 . . . . . . 7  |-  ( z  =  C  ->  (
z D B )  =  ( C D B ) )
2018, 19oveq12d 5860 . . . . . 6  |-  ( z  =  C  ->  (
( z D A ) +e ( z D B ) )  =  ( ( C D A ) +e ( C D B ) ) )
2120breq2d 3994 . . . . 5  |-  ( z  =  C  ->  (
( A D B )  <_  ( (
z D A ) +e ( z D B ) )  <-> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) ) )
2213, 17, 21rspc3v 2846 . . . 4  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  A. z  e.  X  ( x D y )  <_  (
( z D x ) +e ( z D y ) )  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
239, 22syl5 32 . . 3  |-  ( ( A  e.  X  /\  B  e.  X  /\  C  e.  X )  ->  ( D  e.  ( *Met `  X
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
24233comr 1201 . 2  |-  ( ( C  e.  X  /\  A  e.  X  /\  B  e.  X )  ->  ( D  e.  ( *Met `  X
)  ->  ( A D B )  <_  (
( C D A ) +e ( C D B ) ) ) )
2524impcom 124 1  |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   class class class wbr 3982    X. cxp 4602   dom cdm 4604   Rel wrel 4609   -->wf 5184   ` cfv 5188  (class class class)co 5842   0cc0 7753   RR*cxr 7932    <_ cle 7934   +ecxad 9706   *Metcxmet 12620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-pnf 7935  df-mnf 7936  df-xr 7937  df-xmet 12628
This theorem is referenced by:  mettri2  13002  xmetge0  13005  xmetsym  13008  xmetpsmet  13009  xmettri  13012  xmetres2  13019  xblss2  13045  xmstri2  13110  comet  13139  xmetxp  13147
  Copyright terms: Public domain W3C validator