Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ralimi | GIF version |
Description: Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.) |
Ref | Expression |
---|---|
ralimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
2ralimi | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimi.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | ralimi 2520 | . 2 ⊢ (∀𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 𝜓) |
3 | 2 | ralimi 2520 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 |
This theorem depends on definitions: df-bi 116 df-ral 2440 |
This theorem is referenced by: xmeteq0 12730 xmettri2 12732 |
Copyright terms: Public domain | W3C validator |