| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2rexbiia | Unicode version | ||
| Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.) |
| Ref | Expression |
|---|---|
| 2rexbiia.1 |
|
| Ref | Expression |
|---|---|
| 2rexbiia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rexbiia.1 |
. . 3
| |
| 2 | 1 | rexbidva 2527 |
. 2
|
| 3 | 2 | rexbiia 2545 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-rex 2514 |
| This theorem is referenced by: elq 9813 cnref1o 9842 |
| Copyright terms: Public domain | W3C validator |