ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2rexbiia Unicode version

Theorem 2rexbiia 2510
Description: Inference adding two restricted existential quantifiers to both sides of an equivalence. (Contributed by NM, 1-Aug-2004.)
Hypothesis
Ref Expression
2rexbiia.1  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
2rexbiia  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x  e.  A  E. y  e.  B  ps )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x)    B( x, y)

Proof of Theorem 2rexbiia
StepHypRef Expression
1 2rexbiia.1 . . 3  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ph  <->  ps )
)
21rexbidva 2491 . 2  |-  ( x  e.  A  ->  ( E. y  e.  B  ph  <->  E. y  e.  B  ps ) )
32rexbiia 2509 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. x  e.  A  E. y  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-rex 2478
This theorem is referenced by:  elq  9687  cnref1o  9716
  Copyright terms: Public domain W3C validator