| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elq | Unicode version | ||
| Description: Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.) |
| Ref | Expression |
|---|---|
| elq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-q 9815 |
. . . 4
| |
| 2 | 1 | eleq2i 2296 |
. . 3
|
| 3 | resima 5038 |
. . . 4
| |
| 4 | 3 | eleq2i 2296 |
. . 3
|
| 5 | divfnzn 9816 |
. . . 4
| |
| 6 | ssid 3244 |
. . . 4
| |
| 7 | ovelimab 6156 |
. . . 4
| |
| 8 | 5, 6, 7 | mp2an 426 |
. . 3
|
| 9 | 2, 4, 8 | 3bitr2i 208 |
. 2
|
| 10 | ovres 6145 |
. . . 4
| |
| 11 | 10 | eqeq2d 2241 |
. . 3
|
| 12 | 11 | 2rexbiia 2546 |
. 2
|
| 13 | 9, 12 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-z 9447 df-q 9815 |
| This theorem is referenced by: qmulz 9818 znq 9819 qre 9820 zq 9821 qaddcl 9830 qnegcl 9831 qmulcl 9832 qapne 9834 qreccl 9837 elpq 9844 qtri3or 10460 eirrap 12289 qredeu 12619 sqrt2irr 12684 sqrt2irrap 12702 pceu 12818 pcqmul 12826 pcqcl 12829 pcneg 12848 pcz 12855 pcadd 12863 logbgcd1irrap 15644 |
| Copyright terms: Public domain | W3C validator |