ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbiia Unicode version

Theorem rexbiia 2523
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.)
Hypothesis
Ref Expression
ralbiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexbiia  |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )

Proof of Theorem rexbiia
StepHypRef Expression
1 ralbiia.1 . . 3  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
21pm5.32i 454 . 2  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  ps )
)
32rexbii2 2519 1  |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2178   E.wrex 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-rex 2492
This theorem is referenced by:  2rexbiia  2524  ceqsrexbv  2911  reu8  2976  reldm  6295  djur  7197  prarloclem3  7645  suplocexprlemell  7861  recexgt0  8688  fsum3  11813  fprodseq  12009  even2n  12300  znf1o  14528  lmres  14835  reeff1o  15360  ioocosf1o  15441
  Copyright terms: Public domain W3C validator