ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbiia Unicode version

Theorem rexbiia 2509
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.)
Hypothesis
Ref Expression
ralbiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexbiia  |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )

Proof of Theorem rexbiia
StepHypRef Expression
1 ralbiia.1 . . 3  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
21pm5.32i 454 . 2  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  ps )
)
32rexbii2 2505 1  |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2164   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-rex 2478
This theorem is referenced by:  2rexbiia  2510  ceqsrexbv  2891  reu8  2956  reldm  6239  djur  7128  prarloclem3  7557  suplocexprlemell  7773  recexgt0  8599  fsum3  11530  fprodseq  11726  even2n  12015  znf1o  14139  lmres  14416  reeff1o  14908  ioocosf1o  14989
  Copyright terms: Public domain W3C validator