ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbiia Unicode version

Theorem rexbiia 2512
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.)
Hypothesis
Ref Expression
ralbiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexbiia  |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )

Proof of Theorem rexbiia
StepHypRef Expression
1 ralbiia.1 . . 3  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
21pm5.32i 454 . 2  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  ps )
)
32rexbii2 2508 1  |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2167   E.wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-rex 2481
This theorem is referenced by:  2rexbiia  2513  ceqsrexbv  2895  reu8  2960  reldm  6244  djur  7135  prarloclem3  7564  suplocexprlemell  7780  recexgt0  8607  fsum3  11552  fprodseq  11748  even2n  12039  znf1o  14207  lmres  14484  reeff1o  15009  ioocosf1o  15090
  Copyright terms: Public domain W3C validator