ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexbiia Unicode version

Theorem rexbiia 2521
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.)
Hypothesis
Ref Expression
ralbiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexbiia  |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )

Proof of Theorem rexbiia
StepHypRef Expression
1 ralbiia.1 . . 3  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
21pm5.32i 454 . 2  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  ps )
)
32rexbii2 2517 1  |-  ( E. x  e.  A  ph  <->  E. x  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2176   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-rex 2490
This theorem is referenced by:  2rexbiia  2522  ceqsrexbv  2904  reu8  2969  reldm  6274  djur  7173  prarloclem3  7612  suplocexprlemell  7828  recexgt0  8655  fsum3  11731  fprodseq  11927  even2n  12218  znf1o  14446  lmres  14753  reeff1o  15278  ioocosf1o  15359
  Copyright terms: Public domain W3C validator