| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbiia | Unicode version | ||
| Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
| Ref | Expression |
|---|---|
| ralbiia.1 |
|
| Ref | Expression |
|---|---|
| rexbiia |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbiia.1 |
. . 3
| |
| 2 | 1 | pm5.32i 454 |
. 2
|
| 3 | 2 | rexbii2 2517 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-rex 2490 |
| This theorem is referenced by: 2rexbiia 2522 ceqsrexbv 2904 reu8 2969 reldm 6272 djur 7171 prarloclem3 7610 suplocexprlemell 7826 recexgt0 8653 fsum3 11698 fprodseq 11894 even2n 12185 znf1o 14413 lmres 14720 reeff1o 15245 ioocosf1o 15326 |
| Copyright terms: Public domain | W3C validator |