| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rexbiia | Unicode version | ||
| Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) | 
| Ref | Expression | 
|---|---|
| ralbiia.1 | 
 | 
| Ref | Expression | 
|---|---|
| rexbiia | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralbiia.1 | 
. . 3
 | |
| 2 | 1 | pm5.32i 454 | 
. 2
 | 
| 3 | 2 | rexbii2 2508 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-rex 2481 | 
| This theorem is referenced by: 2rexbiia 2513 ceqsrexbv 2895 reu8 2960 reldm 6244 djur 7135 prarloclem3 7564 suplocexprlemell 7780 recexgt0 8607 fsum3 11552 fprodseq 11748 even2n 12039 znf1o 14207 lmres 14484 reeff1o 15009 ioocosf1o 15090 | 
| Copyright terms: Public domain | W3C validator |