| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnref1o | Unicode version | ||
| Description: There is a natural
one-to-one mapping from |
| Ref | Expression |
|---|---|
| cnref1o.1 |
|
| Ref | Expression |
|---|---|
| cnref1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . . . 8
| |
| 2 | 1 | recnd 8175 |
. . . . . . 7
|
| 3 | ax-icn 8094 |
. . . . . . . . 9
| |
| 4 | 3 | a1i 9 |
. . . . . . . 8
|
| 5 | simpr 110 |
. . . . . . . . 9
| |
| 6 | 5 | recnd 8175 |
. . . . . . . 8
|
| 7 | 4, 6 | mulcld 8167 |
. . . . . . 7
|
| 8 | 2, 7 | addcld 8166 |
. . . . . 6
|
| 9 | 8 | rgen2a 2584 |
. . . . 5
|
| 10 | cnref1o.1 |
. . . . . 6
| |
| 11 | 10 | fnmpo 6348 |
. . . . 5
|
| 12 | 9, 11 | ax-mp 5 |
. . . 4
|
| 13 | 1st2nd2 6321 |
. . . . . . . . 9
| |
| 14 | 13 | fveq2d 5631 |
. . . . . . . 8
|
| 15 | df-ov 6004 |
. . . . . . . 8
| |
| 16 | 14, 15 | eqtr4di 2280 |
. . . . . . 7
|
| 17 | xp1st 6311 |
. . . . . . . 8
| |
| 18 | xp2nd 6312 |
. . . . . . . 8
| |
| 19 | 17 | recnd 8175 |
. . . . . . . . 9
|
| 20 | 3 | a1i 9 |
. . . . . . . . . 10
|
| 21 | 18 | recnd 8175 |
. . . . . . . . . 10
|
| 22 | 20, 21 | mulcld 8167 |
. . . . . . . . 9
|
| 23 | 19, 22 | addcld 8166 |
. . . . . . . 8
|
| 24 | oveq1 6008 |
. . . . . . . . 9
| |
| 25 | oveq2 6009 |
. . . . . . . . . 10
| |
| 26 | 25 | oveq2d 6017 |
. . . . . . . . 9
|
| 27 | 24, 26, 10 | ovmpog 6139 |
. . . . . . . 8
|
| 28 | 17, 18, 23, 27 | syl3anc 1271 |
. . . . . . 7
|
| 29 | 16, 28 | eqtrd 2262 |
. . . . . 6
|
| 30 | 29, 23 | eqeltrd 2306 |
. . . . 5
|
| 31 | 30 | rgen 2583 |
. . . 4
|
| 32 | ffnfv 5793 |
. . . 4
| |
| 33 | 12, 31, 32 | mpbir2an 948 |
. . 3
|
| 34 | 17, 18 | jca 306 |
. . . . . . 7
|
| 35 | xp1st 6311 |
. . . . . . . 8
| |
| 36 | xp2nd 6312 |
. . . . . . . 8
| |
| 37 | 35, 36 | jca 306 |
. . . . . . 7
|
| 38 | cru 8749 |
. . . . . . 7
| |
| 39 | 34, 37, 38 | syl2an 289 |
. . . . . 6
|
| 40 | fveq2 5627 |
. . . . . . . . 9
| |
| 41 | fveq2 5627 |
. . . . . . . . . 10
| |
| 42 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 43 | 42 | oveq2d 6017 |
. . . . . . . . . 10
|
| 44 | 41, 43 | oveq12d 6019 |
. . . . . . . . 9
|
| 45 | 40, 44 | eqeq12d 2244 |
. . . . . . . 8
|
| 46 | 45, 29 | vtoclga 2867 |
. . . . . . 7
|
| 47 | 29, 46 | eqeqan12d 2245 |
. . . . . 6
|
| 48 | 1st2nd2 6321 |
. . . . . . . 8
| |
| 49 | 13, 48 | eqeqan12d 2245 |
. . . . . . 7
|
| 50 | vex 2802 |
. . . . . . . . 9
| |
| 51 | 1stexg 6313 |
. . . . . . . . 9
| |
| 52 | 50, 51 | ax-mp 5 |
. . . . . . . 8
|
| 53 | 2ndexg 6314 |
. . . . . . . . 9
| |
| 54 | 50, 53 | ax-mp 5 |
. . . . . . . 8
|
| 55 | 52, 54 | opth 4323 |
. . . . . . 7
|
| 56 | 49, 55 | bitrdi 196 |
. . . . . 6
|
| 57 | 39, 47, 56 | 3bitr4d 220 |
. . . . 5
|
| 58 | 57 | biimpd 144 |
. . . 4
|
| 59 | 58 | rgen2a 2584 |
. . 3
|
| 60 | dff13 5892 |
. . 3
| |
| 61 | 33, 59, 60 | mpbir2an 948 |
. 2
|
| 62 | cnre 8142 |
. . . . . 6
| |
| 63 | simpl 109 |
. . . . . . . . 9
| |
| 64 | simpr 110 |
. . . . . . . . 9
| |
| 65 | 63 | recnd 8175 |
. . . . . . . . . 10
|
| 66 | 3 | a1i 9 |
. . . . . . . . . . 11
|
| 67 | 64 | recnd 8175 |
. . . . . . . . . . 11
|
| 68 | 66, 67 | mulcld 8167 |
. . . . . . . . . 10
|
| 69 | 65, 68 | addcld 8166 |
. . . . . . . . 9
|
| 70 | oveq1 6008 |
. . . . . . . . . 10
| |
| 71 | oveq2 6009 |
. . . . . . . . . . 11
| |
| 72 | 71 | oveq2d 6017 |
. . . . . . . . . 10
|
| 73 | 70, 72, 10 | ovmpog 6139 |
. . . . . . . . 9
|
| 74 | 63, 64, 69, 73 | syl3anc 1271 |
. . . . . . . 8
|
| 75 | 74 | eqeq2d 2241 |
. . . . . . 7
|
| 76 | 75 | 2rexbiia 2546 |
. . . . . 6
|
| 77 | 62, 76 | sylibr 134 |
. . . . 5
|
| 78 | fveq2 5627 |
. . . . . . . 8
| |
| 79 | df-ov 6004 |
. . . . . . . 8
| |
| 80 | 78, 79 | eqtr4di 2280 |
. . . . . . 7
|
| 81 | 80 | eqeq2d 2241 |
. . . . . 6
|
| 82 | 81 | rexxp 4866 |
. . . . 5
|
| 83 | 77, 82 | sylibr 134 |
. . . 4
|
| 84 | 83 | rgen 2583 |
. . 3
|
| 85 | dffo3 5782 |
. . 3
| |
| 86 | 33, 84, 85 | mpbir2an 948 |
. 2
|
| 87 | df-f1o 5325 |
. 2
| |
| 88 | 61, 86, 87 | mpbir2an 948 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-sub 8319 df-neg 8320 df-reap 8722 |
| This theorem is referenced by: cnrecnv 11421 |
| Copyright terms: Public domain | W3C validator |