ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnref1o Unicode version

Theorem cnref1o 9807
Description: There is a natural one-to-one mapping from  ( RR  X.  RR ) to  CC, where we map  <. x ,  y
>. to  ( x  +  ( _i  x.  y ) ). In our construction of the complex numbers, this is in fact our definition of  CC (see df-c 7966), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypothesis
Ref Expression
cnref1o.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
Assertion
Ref Expression
cnref1o  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
Distinct variable group:    x, y
Allowed substitution hints:    F( x, y)

Proof of Theorem cnref1o
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  x  e.  RR )
21recnd 8136 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  x  e.  CC )
3 ax-icn 8055 . . . . . . . . 9  |-  _i  e.  CC
43a1i 9 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  _i  e.  CC )
5 simpr 110 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  y  e.  RR )
65recnd 8136 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  y  e.  CC )
74, 6mulcld 8128 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( _i  x.  y
)  e.  CC )
82, 7addcld 8127 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  ( _i  x.  y ) )  e.  CC )
98rgen2a 2562 . . . . 5  |-  A. x  e.  RR  A. y  e.  RR  ( x  +  ( _i  x.  y
) )  e.  CC
10 cnref1o.1 . . . . . 6  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
1110fnmpo 6311 . . . . 5  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  +  ( _i  x.  y
) )  e.  CC  ->  F  Fn  ( RR 
X.  RR ) )
129, 11ax-mp 5 . . . 4  |-  F  Fn  ( RR  X.  RR )
13 1st2nd2 6284 . . . . . . . . 9  |-  ( z  e.  ( RR  X.  RR )  ->  z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >. )
1413fveq2d 5603 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
15 df-ov 5970 . . . . . . . 8  |-  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
1614, 15eqtr4di 2258 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( ( 1st `  z
) F ( 2nd `  z ) ) )
17 xp1st 6274 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( 1st `  z )  e.  RR )
18 xp2nd 6275 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( 2nd `  z )  e.  RR )
1917recnd 8136 . . . . . . . . 9  |-  ( z  e.  ( RR  X.  RR )  ->  ( 1st `  z )  e.  CC )
203a1i 9 . . . . . . . . . 10  |-  ( z  e.  ( RR  X.  RR )  ->  _i  e.  CC )
2118recnd 8136 . . . . . . . . . 10  |-  ( z  e.  ( RR  X.  RR )  ->  ( 2nd `  z )  e.  CC )
2220, 21mulcld 8128 . . . . . . . . 9  |-  ( z  e.  ( RR  X.  RR )  ->  ( _i  x.  ( 2nd `  z
) )  e.  CC )
2319, 22addcld 8127 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  e.  CC )
24 oveq1 5974 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  ( x  +  ( _i  x.  y ) )  =  ( ( 1st `  z
)  +  ( _i  x.  y ) ) )
25 oveq2 5975 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( _i  x.  y )  =  ( _i  x.  ( 2nd `  z ) ) )
2625oveq2d 5983 . . . . . . . . 9  |-  ( y  =  ( 2nd `  z
)  ->  ( ( 1st `  z )  +  ( _i  x.  y
) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
2724, 26, 10ovmpog 6103 . . . . . . . 8  |-  ( ( ( 1st `  z
)  e.  RR  /\  ( 2nd `  z )  e.  RR  /\  (
( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) )  e.  CC )  ->  (
( 1st `  z
) F ( 2nd `  z ) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
2817, 18, 23, 27syl3anc 1250 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
2916, 28eqtrd 2240 . . . . . 6  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
3029, 23eqeltrd 2284 . . . . 5  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  e.  CC )
3130rgen 2561 . . . 4  |-  A. z  e.  ( RR  X.  RR ) ( F `  z )  e.  CC
32 ffnfv 5761 . . . 4  |-  ( F : ( RR  X.  RR ) --> CC  <->  ( F  Fn  ( RR  X.  RR )  /\  A. z  e.  ( RR  X.  RR ) ( F `  z )  e.  CC ) )
3312, 31, 32mpbir2an 945 . . 3  |-  F :
( RR  X.  RR )
--> CC
3417, 18jca 306 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z )  e.  RR  /\  ( 2nd `  z )  e.  RR ) )
35 xp1st 6274 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  ( 1st `  w )  e.  RR )
36 xp2nd 6275 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  ( 2nd `  w )  e.  RR )
3735, 36jca 306 . . . . . . 7  |-  ( w  e.  ( RR  X.  RR )  ->  ( ( 1st `  w )  e.  RR  /\  ( 2nd `  w )  e.  RR ) )
38 cru 8710 . . . . . . 7  |-  ( ( ( ( 1st `  z
)  e.  RR  /\  ( 2nd `  z )  e.  RR )  /\  ( ( 1st `  w
)  e.  RR  /\  ( 2nd `  w )  e.  RR ) )  ->  ( ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) )  <->  ( ( 1st `  z )  =  ( 1st `  w
)  /\  ( 2nd `  z )  =  ( 2nd `  w ) ) ) )
3934, 37, 38syl2an 289 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  =  ( ( 1st `  w )  +  ( _i  x.  ( 2nd `  w ) ) )  <-> 
( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) ) )
40 fveq2 5599 . . . . . . . . 9  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
41 fveq2 5599 . . . . . . . . . 10  |-  ( z  =  w  ->  ( 1st `  z )  =  ( 1st `  w
) )
42 fveq2 5599 . . . . . . . . . . 11  |-  ( z  =  w  ->  ( 2nd `  z )  =  ( 2nd `  w
) )
4342oveq2d 5983 . . . . . . . . . 10  |-  ( z  =  w  ->  (
_i  x.  ( 2nd `  z ) )  =  ( _i  x.  ( 2nd `  w ) ) )
4441, 43oveq12d 5985 . . . . . . . . 9  |-  ( z  =  w  ->  (
( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) )
4540, 44eqeq12d 2222 . . . . . . . 8  |-  ( z  =  w  ->  (
( F `  z
)  =  ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  <->  ( F `  w )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) ) )
4645, 29vtoclga 2844 . . . . . . 7  |-  ( w  e.  ( RR  X.  RR )  ->  ( F `
 w )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) )
4729, 46eqeqan12d 2223 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  <-> 
( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) ) )
48 1st2nd2 6284 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  w  = 
<. ( 1st `  w
) ,  ( 2nd `  w ) >. )
4913, 48eqeqan12d 2223 . . . . . . 7  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( z  =  w  <->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
50 vex 2779 . . . . . . . . 9  |-  z  e. 
_V
51 1stexg 6276 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
5250, 51ax-mp 5 . . . . . . . 8  |-  ( 1st `  z )  e.  _V
53 2ndexg 6277 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 2nd `  z )  e. 
_V )
5450, 53ax-mp 5 . . . . . . . 8  |-  ( 2nd `  z )  e.  _V
5552, 54opth 4299 . . . . . . 7  |-  ( <.
( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. 
<->  ( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) )
5649, 55bitrdi 196 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( z  =  w  <-> 
( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) ) )
5739, 47, 563bitr4d 220 . . . . 5  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  <-> 
z  =  w ) )
5857biimpd 144 . . . 4  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  ->  z  =  w ) )
5958rgen2a 2562 . . 3  |-  A. z  e.  ( RR  X.  RR ) A. w  e.  ( RR  X.  RR ) ( ( F `  z )  =  ( F `  w )  ->  z  =  w )
60 dff13 5860 . . 3  |-  ( F : ( RR  X.  RR ) -1-1-> CC  <->  ( F :
( RR  X.  RR )
--> CC  /\  A. z  e.  ( RR  X.  RR ) A. w  e.  ( RR  X.  RR ) ( ( F `  z )  =  ( F `  w )  ->  z  =  w ) ) )
6133, 59, 60mpbir2an 945 . 2  |-  F :
( RR  X.  RR ) -1-1-> CC
62 cnre 8103 . . . . . 6  |-  ( w  e.  CC  ->  E. u  e.  RR  E. v  e.  RR  w  =  ( u  +  ( _i  x.  v ) ) )
63 simpl 109 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  u  e.  RR )
64 simpr 110 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  v  e.  RR )
6563recnd 8136 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  u  e.  CC )
663a1i 9 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  _i  e.  CC )
6764recnd 8136 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  v  e.  CC )
6866, 67mulcld 8128 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( _i  x.  v
)  e.  CC )
6965, 68addcld 8127 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u  +  ( _i  x.  v ) )  e.  CC )
70 oveq1 5974 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x  +  ( _i  x.  y ) )  =  ( u  +  ( _i  x.  y
) ) )
71 oveq2 5975 . . . . . . . . . . 11  |-  ( y  =  v  ->  (
_i  x.  y )  =  ( _i  x.  v ) )
7271oveq2d 5983 . . . . . . . . . 10  |-  ( y  =  v  ->  (
u  +  ( _i  x.  y ) )  =  ( u  +  ( _i  x.  v
) ) )
7370, 72, 10ovmpog 6103 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR  /\  (
u  +  ( _i  x.  v ) )  e.  CC )  -> 
( u F v )  =  ( u  +  ( _i  x.  v ) ) )
7463, 64, 69, 73syl3anc 1250 . . . . . . . 8  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u F v )  =  ( u  +  ( _i  x.  v ) ) )
7574eqeq2d 2219 . . . . . . 7  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( w  =  ( u F v )  <-> 
w  =  ( u  +  ( _i  x.  v ) ) ) )
76752rexbiia 2524 . . . . . 6  |-  ( E. u  e.  RR  E. v  e.  RR  w  =  ( u F v )  <->  E. u  e.  RR  E. v  e.  RR  w  =  ( u  +  ( _i  x.  v ) ) )
7762, 76sylibr 134 . . . . 5  |-  ( w  e.  CC  ->  E. u  e.  RR  E. v  e.  RR  w  =  ( u F v ) )
78 fveq2 5599 . . . . . . . 8  |-  ( z  =  <. u ,  v
>.  ->  ( F `  z )  =  ( F `  <. u ,  v >. )
)
79 df-ov 5970 . . . . . . . 8  |-  ( u F v )  =  ( F `  <. u ,  v >. )
8078, 79eqtr4di 2258 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( F `  z )  =  ( u F v ) )
8180eqeq2d 2219 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( w  =  ( F `  z
)  <->  w  =  (
u F v ) ) )
8281rexxp 4840 . . . . 5  |-  ( E. z  e.  ( RR 
X.  RR ) w  =  ( F `  z )  <->  E. u  e.  RR  E. v  e.  RR  w  =  ( u F v ) )
8377, 82sylibr 134 . . . 4  |-  ( w  e.  CC  ->  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
)
8483rgen 2561 . . 3  |-  A. w  e.  CC  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
85 dffo3 5750 . . 3  |-  ( F : ( RR  X.  RR ) -onto-> CC  <->  ( F :
( RR  X.  RR )
--> CC  /\  A. w  e.  CC  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
) )
8633, 84, 85mpbir2an 945 . 2  |-  F :
( RR  X.  RR ) -onto-> CC
87 df-f1o 5297 . 2  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  <->  ( F :
( RR  X.  RR ) -1-1-> CC  /\  F :
( RR  X.  RR ) -onto-> CC ) )
8861, 86, 87mpbir2an 945 1  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   _Vcvv 2776   <.cop 3646    X. cxp 4691    Fn wfn 5285   -->wf 5286   -1-1->wf1 5287   -onto->wfo 5288   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   1stc1st 6247   2ndc2nd 6248   CCcc 7958   RRcr 7959   _ici 7962    + caddc 7963    x. cmul 7965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-sub 8280  df-neg 8281  df-reap 8683
This theorem is referenced by:  cnrecnv  11336
  Copyright terms: Public domain W3C validator