ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnref1o Unicode version

Theorem cnref1o 9652
Description: There is a natural one-to-one mapping from  ( RR  X.  RR ) to  CC, where we map  <. x ,  y
>. to  ( x  +  ( _i  x.  y ) ). In our construction of the complex numbers, this is in fact our definition of  CC (see df-c 7819), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
Hypothesis
Ref Expression
cnref1o.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
Assertion
Ref Expression
cnref1o  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
Distinct variable group:    x, y
Allowed substitution hints:    F( x, y)

Proof of Theorem cnref1o
Dummy variables  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  x  e.  RR )
21recnd 7988 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  x  e.  CC )
3 ax-icn 7908 . . . . . . . . 9  |-  _i  e.  CC
43a1i 9 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  _i  e.  CC )
5 simpr 110 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  y  e.  RR )
65recnd 7988 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  y  e.  CC )
74, 6mulcld 7980 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( _i  x.  y
)  e.  CC )
82, 7addcld 7979 . . . . . 6  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  ( _i  x.  y ) )  e.  CC )
98rgen2a 2531 . . . . 5  |-  A. x  e.  RR  A. y  e.  RR  ( x  +  ( _i  x.  y
) )  e.  CC
10 cnref1o.1 . . . . . 6  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
1110fnmpo 6205 . . . . 5  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  +  ( _i  x.  y
) )  e.  CC  ->  F  Fn  ( RR 
X.  RR ) )
129, 11ax-mp 5 . . . 4  |-  F  Fn  ( RR  X.  RR )
13 1st2nd2 6178 . . . . . . . . 9  |-  ( z  e.  ( RR  X.  RR )  ->  z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >. )
1413fveq2d 5521 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. ) )
15 df-ov 5880 . . . . . . . 8  |-  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( F `  <. ( 1st `  z ) ,  ( 2nd `  z
) >. )
1614, 15eqtr4di 2228 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( ( 1st `  z
) F ( 2nd `  z ) ) )
17 xp1st 6168 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( 1st `  z )  e.  RR )
18 xp2nd 6169 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( 2nd `  z )  e.  RR )
1917recnd 7988 . . . . . . . . 9  |-  ( z  e.  ( RR  X.  RR )  ->  ( 1st `  z )  e.  CC )
203a1i 9 . . . . . . . . . 10  |-  ( z  e.  ( RR  X.  RR )  ->  _i  e.  CC )
2118recnd 7988 . . . . . . . . . 10  |-  ( z  e.  ( RR  X.  RR )  ->  ( 2nd `  z )  e.  CC )
2220, 21mulcld 7980 . . . . . . . . 9  |-  ( z  e.  ( RR  X.  RR )  ->  ( _i  x.  ( 2nd `  z
) )  e.  CC )
2319, 22addcld 7979 . . . . . . . 8  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  e.  CC )
24 oveq1 5884 . . . . . . . . 9  |-  ( x  =  ( 1st `  z
)  ->  ( x  +  ( _i  x.  y ) )  =  ( ( 1st `  z
)  +  ( _i  x.  y ) ) )
25 oveq2 5885 . . . . . . . . . 10  |-  ( y  =  ( 2nd `  z
)  ->  ( _i  x.  y )  =  ( _i  x.  ( 2nd `  z ) ) )
2625oveq2d 5893 . . . . . . . . 9  |-  ( y  =  ( 2nd `  z
)  ->  ( ( 1st `  z )  +  ( _i  x.  y
) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
2724, 26, 10ovmpog 6011 . . . . . . . 8  |-  ( ( ( 1st `  z
)  e.  RR  /\  ( 2nd `  z )  e.  RR  /\  (
( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) )  e.  CC )  ->  (
( 1st `  z
) F ( 2nd `  z ) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
2817, 18, 23, 27syl3anc 1238 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z ) F ( 2nd `  z
) )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
2916, 28eqtrd 2210 . . . . . 6  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  =  ( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) ) )
3029, 23eqeltrd 2254 . . . . 5  |-  ( z  e.  ( RR  X.  RR )  ->  ( F `
 z )  e.  CC )
3130rgen 2530 . . . 4  |-  A. z  e.  ( RR  X.  RR ) ( F `  z )  e.  CC
32 ffnfv 5676 . . . 4  |-  ( F : ( RR  X.  RR ) --> CC  <->  ( F  Fn  ( RR  X.  RR )  /\  A. z  e.  ( RR  X.  RR ) ( F `  z )  e.  CC ) )
3312, 31, 32mpbir2an 942 . . 3  |-  F :
( RR  X.  RR )
--> CC
3417, 18jca 306 . . . . . . 7  |-  ( z  e.  ( RR  X.  RR )  ->  ( ( 1st `  z )  e.  RR  /\  ( 2nd `  z )  e.  RR ) )
35 xp1st 6168 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  ( 1st `  w )  e.  RR )
36 xp2nd 6169 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  ( 2nd `  w )  e.  RR )
3735, 36jca 306 . . . . . . 7  |-  ( w  e.  ( RR  X.  RR )  ->  ( ( 1st `  w )  e.  RR  /\  ( 2nd `  w )  e.  RR ) )
38 cru 8561 . . . . . . 7  |-  ( ( ( ( 1st `  z
)  e.  RR  /\  ( 2nd `  z )  e.  RR )  /\  ( ( 1st `  w
)  e.  RR  /\  ( 2nd `  w )  e.  RR ) )  ->  ( ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) )  <->  ( ( 1st `  z )  =  ( 1st `  w
)  /\  ( 2nd `  z )  =  ( 2nd `  w ) ) ) )
3934, 37, 38syl2an 289 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  =  ( ( 1st `  w )  +  ( _i  x.  ( 2nd `  w ) ) )  <-> 
( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) ) )
40 fveq2 5517 . . . . . . . . 9  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
41 fveq2 5517 . . . . . . . . . 10  |-  ( z  =  w  ->  ( 1st `  z )  =  ( 1st `  w
) )
42 fveq2 5517 . . . . . . . . . . 11  |-  ( z  =  w  ->  ( 2nd `  z )  =  ( 2nd `  w
) )
4342oveq2d 5893 . . . . . . . . . 10  |-  ( z  =  w  ->  (
_i  x.  ( 2nd `  z ) )  =  ( _i  x.  ( 2nd `  w ) ) )
4441, 43oveq12d 5895 . . . . . . . . 9  |-  ( z  =  w  ->  (
( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) )
4540, 44eqeq12d 2192 . . . . . . . 8  |-  ( z  =  w  ->  (
( F `  z
)  =  ( ( 1st `  z )  +  ( _i  x.  ( 2nd `  z ) ) )  <->  ( F `  w )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) ) )
4645, 29vtoclga 2805 . . . . . . 7  |-  ( w  e.  ( RR  X.  RR )  ->  ( F `
 w )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) )
4729, 46eqeqan12d 2193 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  <-> 
( ( 1st `  z
)  +  ( _i  x.  ( 2nd `  z
) ) )  =  ( ( 1st `  w
)  +  ( _i  x.  ( 2nd `  w
) ) ) ) )
48 1st2nd2 6178 . . . . . . . 8  |-  ( w  e.  ( RR  X.  RR )  ->  w  = 
<. ( 1st `  w
) ,  ( 2nd `  w ) >. )
4913, 48eqeqan12d 2193 . . . . . . 7  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( z  =  w  <->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. ) )
50 vex 2742 . . . . . . . . 9  |-  z  e. 
_V
51 1stexg 6170 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 1st `  z )  e. 
_V )
5250, 51ax-mp 5 . . . . . . . 8  |-  ( 1st `  z )  e.  _V
53 2ndexg 6171 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( 2nd `  z )  e. 
_V )
5450, 53ax-mp 5 . . . . . . . 8  |-  ( 2nd `  z )  e.  _V
5552, 54opth 4239 . . . . . . 7  |-  ( <.
( 1st `  z
) ,  ( 2nd `  z ) >.  =  <. ( 1st `  w ) ,  ( 2nd `  w
) >. 
<->  ( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) )
5649, 55bitrdi 196 . . . . . 6  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( z  =  w  <-> 
( ( 1st `  z
)  =  ( 1st `  w )  /\  ( 2nd `  z )  =  ( 2nd `  w
) ) ) )
5739, 47, 563bitr4d 220 . . . . 5  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  <-> 
z  =  w ) )
5857biimpd 144 . . . 4  |-  ( ( z  e.  ( RR 
X.  RR )  /\  w  e.  ( RR  X.  RR ) )  -> 
( ( F `  z )  =  ( F `  w )  ->  z  =  w ) )
5958rgen2a 2531 . . 3  |-  A. z  e.  ( RR  X.  RR ) A. w  e.  ( RR  X.  RR ) ( ( F `  z )  =  ( F `  w )  ->  z  =  w )
60 dff13 5771 . . 3  |-  ( F : ( RR  X.  RR ) -1-1-> CC  <->  ( F :
( RR  X.  RR )
--> CC  /\  A. z  e.  ( RR  X.  RR ) A. w  e.  ( RR  X.  RR ) ( ( F `  z )  =  ( F `  w )  ->  z  =  w ) ) )
6133, 59, 60mpbir2an 942 . 2  |-  F :
( RR  X.  RR ) -1-1-> CC
62 cnre 7955 . . . . . 6  |-  ( w  e.  CC  ->  E. u  e.  RR  E. v  e.  RR  w  =  ( u  +  ( _i  x.  v ) ) )
63 simpl 109 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  u  e.  RR )
64 simpr 110 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  v  e.  RR )
6563recnd 7988 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  u  e.  CC )
663a1i 9 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  _i  e.  CC )
6764recnd 7988 . . . . . . . . . . 11  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  v  e.  CC )
6866, 67mulcld 7980 . . . . . . . . . 10  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( _i  x.  v
)  e.  CC )
6965, 68addcld 7979 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u  +  ( _i  x.  v ) )  e.  CC )
70 oveq1 5884 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x  +  ( _i  x.  y ) )  =  ( u  +  ( _i  x.  y
) ) )
71 oveq2 5885 . . . . . . . . . . 11  |-  ( y  =  v  ->  (
_i  x.  y )  =  ( _i  x.  v ) )
7271oveq2d 5893 . . . . . . . . . 10  |-  ( y  =  v  ->  (
u  +  ( _i  x.  y ) )  =  ( u  +  ( _i  x.  v
) ) )
7370, 72, 10ovmpog 6011 . . . . . . . . 9  |-  ( ( u  e.  RR  /\  v  e.  RR  /\  (
u  +  ( _i  x.  v ) )  e.  CC )  -> 
( u F v )  =  ( u  +  ( _i  x.  v ) ) )
7463, 64, 69, 73syl3anc 1238 . . . . . . . 8  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( u F v )  =  ( u  +  ( _i  x.  v ) ) )
7574eqeq2d 2189 . . . . . . 7  |-  ( ( u  e.  RR  /\  v  e.  RR )  ->  ( w  =  ( u F v )  <-> 
w  =  ( u  +  ( _i  x.  v ) ) ) )
76752rexbiia 2493 . . . . . 6  |-  ( E. u  e.  RR  E. v  e.  RR  w  =  ( u F v )  <->  E. u  e.  RR  E. v  e.  RR  w  =  ( u  +  ( _i  x.  v ) ) )
7762, 76sylibr 134 . . . . 5  |-  ( w  e.  CC  ->  E. u  e.  RR  E. v  e.  RR  w  =  ( u F v ) )
78 fveq2 5517 . . . . . . . 8  |-  ( z  =  <. u ,  v
>.  ->  ( F `  z )  =  ( F `  <. u ,  v >. )
)
79 df-ov 5880 . . . . . . . 8  |-  ( u F v )  =  ( F `  <. u ,  v >. )
8078, 79eqtr4di 2228 . . . . . . 7  |-  ( z  =  <. u ,  v
>.  ->  ( F `  z )  =  ( u F v ) )
8180eqeq2d 2189 . . . . . 6  |-  ( z  =  <. u ,  v
>.  ->  ( w  =  ( F `  z
)  <->  w  =  (
u F v ) ) )
8281rexxp 4773 . . . . 5  |-  ( E. z  e.  ( RR 
X.  RR ) w  =  ( F `  z )  <->  E. u  e.  RR  E. v  e.  RR  w  =  ( u F v ) )
8377, 82sylibr 134 . . . 4  |-  ( w  e.  CC  ->  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
)
8483rgen 2530 . . 3  |-  A. w  e.  CC  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
85 dffo3 5665 . . 3  |-  ( F : ( RR  X.  RR ) -onto-> CC  <->  ( F :
( RR  X.  RR )
--> CC  /\  A. w  e.  CC  E. z  e.  ( RR  X.  RR ) w  =  ( F `  z )
) )
8633, 84, 85mpbir2an 942 . 2  |-  F :
( RR  X.  RR ) -onto-> CC
87 df-f1o 5225 . 2  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  <->  ( F :
( RR  X.  RR ) -1-1-> CC  /\  F :
( RR  X.  RR ) -onto-> CC ) )
8861, 86, 87mpbir2an 942 1  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2739   <.cop 3597    X. cxp 4626    Fn wfn 5213   -->wf 5214   -1-1->wf1 5215   -onto->wfo 5216   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877    e. cmpo 5879   1stc1st 6141   2ndc2nd 6142   CCcc 7811   RRcr 7812   _ici 7815    + caddc 7816    x. cmul 7818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-sub 8132  df-neg 8133  df-reap 8534
This theorem is referenced by:  cnrecnv  10921
  Copyright terms: Public domain W3C validator