| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnref1o | Unicode version | ||
| Description: There is a natural
one-to-one mapping from |
| Ref | Expression |
|---|---|
| cnref1o.1 |
|
| Ref | Expression |
|---|---|
| cnref1o |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . . . 8
| |
| 2 | 1 | recnd 8136 |
. . . . . . 7
|
| 3 | ax-icn 8055 |
. . . . . . . . 9
| |
| 4 | 3 | a1i 9 |
. . . . . . . 8
|
| 5 | simpr 110 |
. . . . . . . . 9
| |
| 6 | 5 | recnd 8136 |
. . . . . . . 8
|
| 7 | 4, 6 | mulcld 8128 |
. . . . . . 7
|
| 8 | 2, 7 | addcld 8127 |
. . . . . 6
|
| 9 | 8 | rgen2a 2562 |
. . . . 5
|
| 10 | cnref1o.1 |
. . . . . 6
| |
| 11 | 10 | fnmpo 6311 |
. . . . 5
|
| 12 | 9, 11 | ax-mp 5 |
. . . 4
|
| 13 | 1st2nd2 6284 |
. . . . . . . . 9
| |
| 14 | 13 | fveq2d 5603 |
. . . . . . . 8
|
| 15 | df-ov 5970 |
. . . . . . . 8
| |
| 16 | 14, 15 | eqtr4di 2258 |
. . . . . . 7
|
| 17 | xp1st 6274 |
. . . . . . . 8
| |
| 18 | xp2nd 6275 |
. . . . . . . 8
| |
| 19 | 17 | recnd 8136 |
. . . . . . . . 9
|
| 20 | 3 | a1i 9 |
. . . . . . . . . 10
|
| 21 | 18 | recnd 8136 |
. . . . . . . . . 10
|
| 22 | 20, 21 | mulcld 8128 |
. . . . . . . . 9
|
| 23 | 19, 22 | addcld 8127 |
. . . . . . . 8
|
| 24 | oveq1 5974 |
. . . . . . . . 9
| |
| 25 | oveq2 5975 |
. . . . . . . . . 10
| |
| 26 | 25 | oveq2d 5983 |
. . . . . . . . 9
|
| 27 | 24, 26, 10 | ovmpog 6103 |
. . . . . . . 8
|
| 28 | 17, 18, 23, 27 | syl3anc 1250 |
. . . . . . 7
|
| 29 | 16, 28 | eqtrd 2240 |
. . . . . 6
|
| 30 | 29, 23 | eqeltrd 2284 |
. . . . 5
|
| 31 | 30 | rgen 2561 |
. . . 4
|
| 32 | ffnfv 5761 |
. . . 4
| |
| 33 | 12, 31, 32 | mpbir2an 945 |
. . 3
|
| 34 | 17, 18 | jca 306 |
. . . . . . 7
|
| 35 | xp1st 6274 |
. . . . . . . 8
| |
| 36 | xp2nd 6275 |
. . . . . . . 8
| |
| 37 | 35, 36 | jca 306 |
. . . . . . 7
|
| 38 | cru 8710 |
. . . . . . 7
| |
| 39 | 34, 37, 38 | syl2an 289 |
. . . . . 6
|
| 40 | fveq2 5599 |
. . . . . . . . 9
| |
| 41 | fveq2 5599 |
. . . . . . . . . 10
| |
| 42 | fveq2 5599 |
. . . . . . . . . . 11
| |
| 43 | 42 | oveq2d 5983 |
. . . . . . . . . 10
|
| 44 | 41, 43 | oveq12d 5985 |
. . . . . . . . 9
|
| 45 | 40, 44 | eqeq12d 2222 |
. . . . . . . 8
|
| 46 | 45, 29 | vtoclga 2844 |
. . . . . . 7
|
| 47 | 29, 46 | eqeqan12d 2223 |
. . . . . 6
|
| 48 | 1st2nd2 6284 |
. . . . . . . 8
| |
| 49 | 13, 48 | eqeqan12d 2223 |
. . . . . . 7
|
| 50 | vex 2779 |
. . . . . . . . 9
| |
| 51 | 1stexg 6276 |
. . . . . . . . 9
| |
| 52 | 50, 51 | ax-mp 5 |
. . . . . . . 8
|
| 53 | 2ndexg 6277 |
. . . . . . . . 9
| |
| 54 | 50, 53 | ax-mp 5 |
. . . . . . . 8
|
| 55 | 52, 54 | opth 4299 |
. . . . . . 7
|
| 56 | 49, 55 | bitrdi 196 |
. . . . . 6
|
| 57 | 39, 47, 56 | 3bitr4d 220 |
. . . . 5
|
| 58 | 57 | biimpd 144 |
. . . 4
|
| 59 | 58 | rgen2a 2562 |
. . 3
|
| 60 | dff13 5860 |
. . 3
| |
| 61 | 33, 59, 60 | mpbir2an 945 |
. 2
|
| 62 | cnre 8103 |
. . . . . 6
| |
| 63 | simpl 109 |
. . . . . . . . 9
| |
| 64 | simpr 110 |
. . . . . . . . 9
| |
| 65 | 63 | recnd 8136 |
. . . . . . . . . 10
|
| 66 | 3 | a1i 9 |
. . . . . . . . . . 11
|
| 67 | 64 | recnd 8136 |
. . . . . . . . . . 11
|
| 68 | 66, 67 | mulcld 8128 |
. . . . . . . . . 10
|
| 69 | 65, 68 | addcld 8127 |
. . . . . . . . 9
|
| 70 | oveq1 5974 |
. . . . . . . . . 10
| |
| 71 | oveq2 5975 |
. . . . . . . . . . 11
| |
| 72 | 71 | oveq2d 5983 |
. . . . . . . . . 10
|
| 73 | 70, 72, 10 | ovmpog 6103 |
. . . . . . . . 9
|
| 74 | 63, 64, 69, 73 | syl3anc 1250 |
. . . . . . . 8
|
| 75 | 74 | eqeq2d 2219 |
. . . . . . 7
|
| 76 | 75 | 2rexbiia 2524 |
. . . . . 6
|
| 77 | 62, 76 | sylibr 134 |
. . . . 5
|
| 78 | fveq2 5599 |
. . . . . . . 8
| |
| 79 | df-ov 5970 |
. . . . . . . 8
| |
| 80 | 78, 79 | eqtr4di 2258 |
. . . . . . 7
|
| 81 | 80 | eqeq2d 2219 |
. . . . . 6
|
| 82 | 81 | rexxp 4840 |
. . . . 5
|
| 83 | 77, 82 | sylibr 134 |
. . . 4
|
| 84 | 83 | rgen 2561 |
. . 3
|
| 85 | dffo3 5750 |
. . 3
| |
| 86 | 33, 84, 85 | mpbir2an 945 |
. 2
|
| 87 | df-f1o 5297 |
. 2
| |
| 88 | 61, 86, 87 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-sub 8280 df-neg 8281 df-reap 8683 |
| This theorem is referenced by: cnrecnv 11336 |
| Copyright terms: Public domain | W3C validator |