| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cnref1o | Unicode version | ||
| Description: There is a natural
one-to-one mapping from  | 
| Ref | Expression | 
|---|---|
| cnref1o.1 | 
 | 
| Ref | Expression | 
|---|---|
| cnref1o | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 109 | 
. . . . . . . 8
 | |
| 2 | 1 | recnd 8055 | 
. . . . . . 7
 | 
| 3 | ax-icn 7974 | 
. . . . . . . . 9
 | |
| 4 | 3 | a1i 9 | 
. . . . . . . 8
 | 
| 5 | simpr 110 | 
. . . . . . . . 9
 | |
| 6 | 5 | recnd 8055 | 
. . . . . . . 8
 | 
| 7 | 4, 6 | mulcld 8047 | 
. . . . . . 7
 | 
| 8 | 2, 7 | addcld 8046 | 
. . . . . 6
 | 
| 9 | 8 | rgen2a 2551 | 
. . . . 5
 | 
| 10 | cnref1o.1 | 
. . . . . 6
 | |
| 11 | 10 | fnmpo 6260 | 
. . . . 5
 | 
| 12 | 9, 11 | ax-mp 5 | 
. . . 4
 | 
| 13 | 1st2nd2 6233 | 
. . . . . . . . 9
 | |
| 14 | 13 | fveq2d 5562 | 
. . . . . . . 8
 | 
| 15 | df-ov 5925 | 
. . . . . . . 8
 | |
| 16 | 14, 15 | eqtr4di 2247 | 
. . . . . . 7
 | 
| 17 | xp1st 6223 | 
. . . . . . . 8
 | |
| 18 | xp2nd 6224 | 
. . . . . . . 8
 | |
| 19 | 17 | recnd 8055 | 
. . . . . . . . 9
 | 
| 20 | 3 | a1i 9 | 
. . . . . . . . . 10
 | 
| 21 | 18 | recnd 8055 | 
. . . . . . . . . 10
 | 
| 22 | 20, 21 | mulcld 8047 | 
. . . . . . . . 9
 | 
| 23 | 19, 22 | addcld 8046 | 
. . . . . . . 8
 | 
| 24 | oveq1 5929 | 
. . . . . . . . 9
 | |
| 25 | oveq2 5930 | 
. . . . . . . . . 10
 | |
| 26 | 25 | oveq2d 5938 | 
. . . . . . . . 9
 | 
| 27 | 24, 26, 10 | ovmpog 6057 | 
. . . . . . . 8
 | 
| 28 | 17, 18, 23, 27 | syl3anc 1249 | 
. . . . . . 7
 | 
| 29 | 16, 28 | eqtrd 2229 | 
. . . . . 6
 | 
| 30 | 29, 23 | eqeltrd 2273 | 
. . . . 5
 | 
| 31 | 30 | rgen 2550 | 
. . . 4
 | 
| 32 | ffnfv 5720 | 
. . . 4
 | |
| 33 | 12, 31, 32 | mpbir2an 944 | 
. . 3
 | 
| 34 | 17, 18 | jca 306 | 
. . . . . . 7
 | 
| 35 | xp1st 6223 | 
. . . . . . . 8
 | |
| 36 | xp2nd 6224 | 
. . . . . . . 8
 | |
| 37 | 35, 36 | jca 306 | 
. . . . . . 7
 | 
| 38 | cru 8629 | 
. . . . . . 7
 | |
| 39 | 34, 37, 38 | syl2an 289 | 
. . . . . 6
 | 
| 40 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 41 | fveq2 5558 | 
. . . . . . . . . 10
 | |
| 42 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 43 | 42 | oveq2d 5938 | 
. . . . . . . . . 10
 | 
| 44 | 41, 43 | oveq12d 5940 | 
. . . . . . . . 9
 | 
| 45 | 40, 44 | eqeq12d 2211 | 
. . . . . . . 8
 | 
| 46 | 45, 29 | vtoclga 2830 | 
. . . . . . 7
 | 
| 47 | 29, 46 | eqeqan12d 2212 | 
. . . . . 6
 | 
| 48 | 1st2nd2 6233 | 
. . . . . . . 8
 | |
| 49 | 13, 48 | eqeqan12d 2212 | 
. . . . . . 7
 | 
| 50 | vex 2766 | 
. . . . . . . . 9
 | |
| 51 | 1stexg 6225 | 
. . . . . . . . 9
 | |
| 52 | 50, 51 | ax-mp 5 | 
. . . . . . . 8
 | 
| 53 | 2ndexg 6226 | 
. . . . . . . . 9
 | |
| 54 | 50, 53 | ax-mp 5 | 
. . . . . . . 8
 | 
| 55 | 52, 54 | opth 4270 | 
. . . . . . 7
 | 
| 56 | 49, 55 | bitrdi 196 | 
. . . . . 6
 | 
| 57 | 39, 47, 56 | 3bitr4d 220 | 
. . . . 5
 | 
| 58 | 57 | biimpd 144 | 
. . . 4
 | 
| 59 | 58 | rgen2a 2551 | 
. . 3
 | 
| 60 | dff13 5815 | 
. . 3
 | |
| 61 | 33, 59, 60 | mpbir2an 944 | 
. 2
 | 
| 62 | cnre 8022 | 
. . . . . 6
 | |
| 63 | simpl 109 | 
. . . . . . . . 9
 | |
| 64 | simpr 110 | 
. . . . . . . . 9
 | |
| 65 | 63 | recnd 8055 | 
. . . . . . . . . 10
 | 
| 66 | 3 | a1i 9 | 
. . . . . . . . . . 11
 | 
| 67 | 64 | recnd 8055 | 
. . . . . . . . . . 11
 | 
| 68 | 66, 67 | mulcld 8047 | 
. . . . . . . . . 10
 | 
| 69 | 65, 68 | addcld 8046 | 
. . . . . . . . 9
 | 
| 70 | oveq1 5929 | 
. . . . . . . . . 10
 | |
| 71 | oveq2 5930 | 
. . . . . . . . . . 11
 | |
| 72 | 71 | oveq2d 5938 | 
. . . . . . . . . 10
 | 
| 73 | 70, 72, 10 | ovmpog 6057 | 
. . . . . . . . 9
 | 
| 74 | 63, 64, 69, 73 | syl3anc 1249 | 
. . . . . . . 8
 | 
| 75 | 74 | eqeq2d 2208 | 
. . . . . . 7
 | 
| 76 | 75 | 2rexbiia 2513 | 
. . . . . 6
 | 
| 77 | 62, 76 | sylibr 134 | 
. . . . 5
 | 
| 78 | fveq2 5558 | 
. . . . . . . 8
 | |
| 79 | df-ov 5925 | 
. . . . . . . 8
 | |
| 80 | 78, 79 | eqtr4di 2247 | 
. . . . . . 7
 | 
| 81 | 80 | eqeq2d 2208 | 
. . . . . 6
 | 
| 82 | 81 | rexxp 4810 | 
. . . . 5
 | 
| 83 | 77, 82 | sylibr 134 | 
. . . 4
 | 
| 84 | 83 | rgen 2550 | 
. . 3
 | 
| 85 | dffo3 5709 | 
. . 3
 | |
| 86 | 33, 84, 85 | mpbir2an 944 | 
. 2
 | 
| 87 | df-f1o 5265 | 
. 2
 | |
| 88 | 61, 86, 87 | mpbir2an 944 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-sub 8199 df-neg 8200 df-reap 8602 | 
| This theorem is referenced by: cnrecnv 11075 | 
| Copyright terms: Public domain | W3C validator |