| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidva | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 |
|
| Ref | Expression |
|---|---|
| rexbidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. 2
| |
| 2 | ralbidva.1 |
. 2
| |
| 3 | 1, 2 | rexbida 2501 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-rex 2490 |
| This theorem is referenced by: 2rexbiia 2522 2rexbidva 2529 rexeqbidva 2721 dfimafn 5629 funimass4 5631 fconstfvm 5804 fliftel 5864 fliftf 5870 f1oiso 5897 releldm2 6273 frecabcl 6487 qsinxp 6700 qliftel 6704 supisolem 7112 enumctlemm 7218 ismkvnex 7259 genpassl 7639 genpassu 7640 addcomprg 7693 mulcomprg 7695 1idprl 7705 1idpru 7706 archrecnq 7778 archrecpr 7779 caucvgprprlemexbt 7821 caucvgprprlemexb 7822 archsr 7897 map2psrprg 7920 suplocsrlempr 7922 axsuploc 8147 cnegexlem3 8251 cnegex2 8253 recexre 8653 rerecclap 8805 creur 9034 creui 9035 nndiv 9079 arch 9294 nnrecl 9295 expnlbnd 10811 fimaxq 10974 wrdval 10999 clim2 11627 clim2c 11628 clim0c 11630 climabs0 11651 climrecvg1n 11692 sumeq2 11703 mertensabs 11881 prodeq2 11901 zproddc 11923 nndivides 12141 alzdvds 12198 oddm1even 12219 oddnn02np1 12224 oddge22np1 12225 evennn02n 12226 evennn2n 12227 divalgb 12269 modremain 12273 modprmn0modprm0 12612 pythagtriplem2 12622 pythagtrip 12639 pceu 12651 4sqlem12 12758 gsumpropd2 13258 mndpfo 13303 mndpropd 13305 grppropd 13382 conjnmzb 13649 dvdsr02 13900 crngunit 13906 dvdsrpropdg 13942 cnfldui 14384 znunit 14454 iscnp3 14708 lmbrf 14720 cncnp 14735 lmss 14751 metrest 15011 metcnp 15017 metcnp2 15018 txmetcnp 15023 cdivcncfap 15109 ivthdec 15149 lgsquadlem2 15588 2lgslem1a 15598 pw1nct 15977 |
| Copyright terms: Public domain | W3C validator |