Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexbidva | Unicode version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 |
Ref | Expression |
---|---|
rexbidva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1508 | . 2 | |
2 | ralbidva.1 | . 2 | |
3 | 1, 2 | rexbida 2452 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2128 wrex 2436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-4 1490 ax-17 1506 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-rex 2441 |
This theorem is referenced by: 2rexbiia 2473 2rexbidva 2480 rexeqbidva 2667 dfimafn 5519 funimass4 5521 fconstfvm 5687 fliftel 5745 fliftf 5751 f1oiso 5778 releldm2 6135 frecabcl 6348 qsinxp 6558 qliftel 6562 supisolem 6954 enumctlemm 7060 ismkvnex 7100 genpassl 7446 genpassu 7447 addcomprg 7500 mulcomprg 7502 1idprl 7512 1idpru 7513 archrecnq 7585 archrecpr 7586 caucvgprprlemexbt 7628 caucvgprprlemexb 7629 archsr 7704 map2psrprg 7727 suplocsrlempr 7729 axsuploc 7952 cnegexlem3 8056 cnegex2 8058 recexre 8457 rerecclap 8607 creur 8835 creui 8836 nndiv 8879 arch 9092 nnrecl 9093 expnlbnd 10551 fimaxq 10712 clim2 11191 clim2c 11192 clim0c 11194 climabs0 11215 climrecvg1n 11256 sumeq2 11267 mertensabs 11445 prodeq2 11465 zproddc 11487 nndivides 11704 alzdvds 11758 oddm1even 11778 oddnn02np1 11783 oddge22np1 11784 evennn02n 11785 evennn2n 11786 divalgb 11828 modremain 11832 modprmn0modprm0 12146 pythagtriplem2 12156 pythagtrip 12173 pceu 12185 iscnp3 12673 lmbrf 12685 cncnp 12700 lmss 12716 metrest 12976 metcnp 12982 metcnp2 12983 txmetcnp 12988 cdivcncfap 13057 ivthdec 13092 pw1nct 13646 |
Copyright terms: Public domain | W3C validator |