| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidva | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 |
|
| Ref | Expression |
|---|---|
| rexbidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. 2
| |
| 2 | ralbidva.1 |
. 2
| |
| 3 | 1, 2 | rexbida 2501 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-rex 2490 |
| This theorem is referenced by: 2rexbiia 2522 2rexbidva 2529 rexeqbidva 2721 dfimafn 5627 funimass4 5629 fconstfvm 5802 fliftel 5862 fliftf 5868 f1oiso 5895 releldm2 6271 frecabcl 6485 qsinxp 6698 qliftel 6702 supisolem 7110 enumctlemm 7216 ismkvnex 7257 genpassl 7637 genpassu 7638 addcomprg 7691 mulcomprg 7693 1idprl 7703 1idpru 7704 archrecnq 7776 archrecpr 7777 caucvgprprlemexbt 7819 caucvgprprlemexb 7820 archsr 7895 map2psrprg 7918 suplocsrlempr 7920 axsuploc 8145 cnegexlem3 8249 cnegex2 8251 recexre 8651 rerecclap 8803 creur 9032 creui 9033 nndiv 9077 arch 9292 nnrecl 9293 expnlbnd 10809 fimaxq 10972 wrdval 10997 clim2 11594 clim2c 11595 clim0c 11597 climabs0 11618 climrecvg1n 11659 sumeq2 11670 mertensabs 11848 prodeq2 11868 zproddc 11890 nndivides 12108 alzdvds 12165 oddm1even 12186 oddnn02np1 12191 oddge22np1 12192 evennn02n 12193 evennn2n 12194 divalgb 12236 modremain 12240 modprmn0modprm0 12579 pythagtriplem2 12589 pythagtrip 12606 pceu 12618 4sqlem12 12725 gsumpropd2 13225 mndpfo 13270 mndpropd 13272 grppropd 13349 conjnmzb 13616 dvdsr02 13867 crngunit 13873 dvdsrpropdg 13909 cnfldui 14351 znunit 14421 iscnp3 14675 lmbrf 14687 cncnp 14702 lmss 14718 metrest 14978 metcnp 14984 metcnp2 14985 txmetcnp 14990 cdivcncfap 15076 ivthdec 15116 lgsquadlem2 15555 2lgslem1a 15565 pw1nct 15940 |
| Copyright terms: Public domain | W3C validator |