![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rexbidva | Unicode version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rexbidva |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 |
. 2
![]() ![]() ![]() ![]() | |
2 | ralbidva.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | rexbida 2472 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-rex 2461 |
This theorem is referenced by: 2rexbiia 2493 2rexbidva 2500 rexeqbidva 2688 dfimafn 5565 funimass4 5567 fconstfvm 5735 fliftel 5794 fliftf 5800 f1oiso 5827 releldm2 6186 frecabcl 6400 qsinxp 6611 qliftel 6615 supisolem 7007 enumctlemm 7113 ismkvnex 7153 genpassl 7523 genpassu 7524 addcomprg 7577 mulcomprg 7579 1idprl 7589 1idpru 7590 archrecnq 7662 archrecpr 7663 caucvgprprlemexbt 7705 caucvgprprlemexb 7706 archsr 7781 map2psrprg 7804 suplocsrlempr 7806 axsuploc 8030 cnegexlem3 8134 cnegex2 8136 recexre 8535 rerecclap 8687 creur 8916 creui 8917 nndiv 8960 arch 9173 nnrecl 9174 expnlbnd 10645 fimaxq 10807 clim2 11291 clim2c 11292 clim0c 11294 climabs0 11315 climrecvg1n 11356 sumeq2 11367 mertensabs 11545 prodeq2 11565 zproddc 11587 nndivides 11804 alzdvds 11860 oddm1even 11880 oddnn02np1 11885 oddge22np1 11886 evennn02n 11887 evennn2n 11888 divalgb 11930 modremain 11934 modprmn0modprm0 12256 pythagtriplem2 12266 pythagtrip 12283 pceu 12295 mndpfo 12839 mndpropd 12841 grppropd 12893 dvdsr02 13274 crngunit 13280 dvdsrpropdg 13316 iscnp3 13706 lmbrf 13718 cncnp 13733 lmss 13749 metrest 14009 metcnp 14015 metcnp2 14016 txmetcnp 14021 cdivcncfap 14090 ivthdec 14125 pw1nct 14755 |
Copyright terms: Public domain | W3C validator |