| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidva | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 |
|
| Ref | Expression |
|---|---|
| rexbidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. 2
| |
| 2 | ralbidva.1 |
. 2
| |
| 3 | 1, 2 | rexbida 2525 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-rex 2514 |
| This theorem is referenced by: 2rexbiia 2546 2rexbidva 2553 rexeqbidva 2747 dfimafn 5682 funimass4 5684 fconstfvm 5857 fliftel 5917 fliftf 5923 f1oiso 5950 releldm2 6331 frecabcl 6545 qsinxp 6758 qliftel 6762 supisolem 7175 enumctlemm 7281 ismkvnex 7322 genpassl 7711 genpassu 7712 addcomprg 7765 mulcomprg 7767 1idprl 7777 1idpru 7778 archrecnq 7850 archrecpr 7851 caucvgprprlemexbt 7893 caucvgprprlemexb 7894 archsr 7969 map2psrprg 7992 suplocsrlempr 7994 axsuploc 8219 cnegexlem3 8323 cnegex2 8325 recexre 8725 rerecclap 8877 creur 9106 creui 9107 nndiv 9151 arch 9366 nnrecl 9367 expnlbnd 10886 fimaxq 11049 wrdval 11074 clim2 11794 clim2c 11795 clim0c 11797 climabs0 11818 climrecvg1n 11859 sumeq2 11870 mertensabs 12048 prodeq2 12068 zproddc 12090 nndivides 12308 alzdvds 12365 oddm1even 12386 oddnn02np1 12391 oddge22np1 12392 evennn02n 12393 evennn2n 12394 divalgb 12436 modremain 12440 modprmn0modprm0 12779 pythagtriplem2 12789 pythagtrip 12806 pceu 12818 4sqlem12 12925 gsumpropd2 13426 mndpfo 13471 mndpropd 13473 grppropd 13550 conjnmzb 13817 dvdsr02 14069 crngunit 14075 dvdsrpropdg 14111 cnfldui 14553 znunit 14623 iscnp3 14877 lmbrf 14889 cncnp 14904 lmss 14920 metrest 15180 metcnp 15186 metcnp2 15187 txmetcnp 15192 cdivcncfap 15278 ivthdec 15318 lgsquadlem2 15757 2lgslem1a 15767 pw1nct 16369 |
| Copyright terms: Public domain | W3C validator |