| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidva | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 |
|
| Ref | Expression |
|---|---|
| rexbidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. 2
| |
| 2 | ralbidva.1 |
. 2
| |
| 3 | 1, 2 | rexbida 2492 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-rex 2481 |
| This theorem is referenced by: 2rexbiia 2513 2rexbidva 2520 rexeqbidva 2712 dfimafn 5609 funimass4 5611 fconstfvm 5780 fliftel 5840 fliftf 5846 f1oiso 5873 releldm2 6243 frecabcl 6457 qsinxp 6670 qliftel 6674 supisolem 7074 enumctlemm 7180 ismkvnex 7221 genpassl 7591 genpassu 7592 addcomprg 7645 mulcomprg 7647 1idprl 7657 1idpru 7658 archrecnq 7730 archrecpr 7731 caucvgprprlemexbt 7773 caucvgprprlemexb 7774 archsr 7849 map2psrprg 7872 suplocsrlempr 7874 axsuploc 8099 cnegexlem3 8203 cnegex2 8205 recexre 8605 rerecclap 8757 creur 8986 creui 8987 nndiv 9031 arch 9246 nnrecl 9247 expnlbnd 10756 fimaxq 10919 wrdval 10938 clim2 11448 clim2c 11449 clim0c 11451 climabs0 11472 climrecvg1n 11513 sumeq2 11524 mertensabs 11702 prodeq2 11722 zproddc 11744 nndivides 11962 alzdvds 12019 oddm1even 12040 oddnn02np1 12045 oddge22np1 12046 evennn02n 12047 evennn2n 12048 divalgb 12090 modremain 12094 modprmn0modprm0 12425 pythagtriplem2 12435 pythagtrip 12452 pceu 12464 4sqlem12 12571 gsumpropd2 13036 mndpfo 13079 mndpropd 13081 grppropd 13149 conjnmzb 13410 dvdsr02 13661 crngunit 13667 dvdsrpropdg 13703 cnfldui 14145 znunit 14215 iscnp3 14439 lmbrf 14451 cncnp 14466 lmss 14482 metrest 14742 metcnp 14748 metcnp2 14749 txmetcnp 14754 cdivcncfap 14840 ivthdec 14880 lgsquadlem2 15319 2lgslem1a 15329 pw1nct 15647 |
| Copyright terms: Public domain | W3C validator |