| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexbidva | Unicode version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| ralbidva.1 |
|
| Ref | Expression |
|---|---|
| rexbidva |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. 2
| |
| 2 | ralbidva.1 |
. 2
| |
| 3 | 1, 2 | rexbida 2503 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-rex 2492 |
| This theorem is referenced by: 2rexbiia 2524 2rexbidva 2531 rexeqbidva 2724 dfimafn 5650 funimass4 5652 fconstfvm 5825 fliftel 5885 fliftf 5891 f1oiso 5918 releldm2 6294 frecabcl 6508 qsinxp 6721 qliftel 6725 supisolem 7136 enumctlemm 7242 ismkvnex 7283 genpassl 7672 genpassu 7673 addcomprg 7726 mulcomprg 7728 1idprl 7738 1idpru 7739 archrecnq 7811 archrecpr 7812 caucvgprprlemexbt 7854 caucvgprprlemexb 7855 archsr 7930 map2psrprg 7953 suplocsrlempr 7955 axsuploc 8180 cnegexlem3 8284 cnegex2 8286 recexre 8686 rerecclap 8838 creur 9067 creui 9068 nndiv 9112 arch 9327 nnrecl 9328 expnlbnd 10846 fimaxq 11009 wrdval 11034 clim2 11709 clim2c 11710 clim0c 11712 climabs0 11733 climrecvg1n 11774 sumeq2 11785 mertensabs 11963 prodeq2 11983 zproddc 12005 nndivides 12223 alzdvds 12280 oddm1even 12301 oddnn02np1 12306 oddge22np1 12307 evennn02n 12308 evennn2n 12309 divalgb 12351 modremain 12355 modprmn0modprm0 12694 pythagtriplem2 12704 pythagtrip 12721 pceu 12733 4sqlem12 12840 gsumpropd2 13340 mndpfo 13385 mndpropd 13387 grppropd 13464 conjnmzb 13731 dvdsr02 13982 crngunit 13988 dvdsrpropdg 14024 cnfldui 14466 znunit 14536 iscnp3 14790 lmbrf 14802 cncnp 14817 lmss 14833 metrest 15093 metcnp 15099 metcnp2 15100 txmetcnp 15105 cdivcncfap 15191 ivthdec 15231 lgsquadlem2 15670 2lgslem1a 15680 pw1nct 16142 |
| Copyright terms: Public domain | W3C validator |