Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexbidva | Unicode version |
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
ralbidva.1 |
Ref | Expression |
---|---|
rexbidva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 | |
2 | ralbidva.1 | . 2 | |
3 | 1, 2 | rexbida 2460 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 wrex 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-17 1514 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-rex 2449 |
This theorem is referenced by: 2rexbiia 2481 2rexbidva 2488 rexeqbidva 2675 dfimafn 5534 funimass4 5536 fconstfvm 5702 fliftel 5760 fliftf 5766 f1oiso 5793 releldm2 6150 frecabcl 6363 qsinxp 6573 qliftel 6577 supisolem 6969 enumctlemm 7075 ismkvnex 7115 genpassl 7461 genpassu 7462 addcomprg 7515 mulcomprg 7517 1idprl 7527 1idpru 7528 archrecnq 7600 archrecpr 7601 caucvgprprlemexbt 7643 caucvgprprlemexb 7644 archsr 7719 map2psrprg 7742 suplocsrlempr 7744 axsuploc 7967 cnegexlem3 8071 cnegex2 8073 recexre 8472 rerecclap 8622 creur 8850 creui 8851 nndiv 8894 arch 9107 nnrecl 9108 expnlbnd 10575 fimaxq 10736 clim2 11220 clim2c 11221 clim0c 11223 climabs0 11244 climrecvg1n 11285 sumeq2 11296 mertensabs 11474 prodeq2 11494 zproddc 11516 nndivides 11733 alzdvds 11788 oddm1even 11808 oddnn02np1 11813 oddge22np1 11814 evennn02n 11815 evennn2n 11816 divalgb 11858 modremain 11862 modprmn0modprm0 12184 pythagtriplem2 12194 pythagtrip 12211 pceu 12223 iscnp3 12803 lmbrf 12815 cncnp 12830 lmss 12846 metrest 13106 metcnp 13112 metcnp2 13113 txmetcnp 13118 cdivcncfap 13187 ivthdec 13222 pw1nct 13843 |
Copyright terms: Public domain | W3C validator |