| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3f1oleml | Unicode version | ||
| Description: Lemma for seq3f1o 10734. This is more or less the result, but
stated
in terms of |
| Ref | Expression |
|---|---|
| iseqf1o.1 |
|
| iseqf1o.2 |
|
| iseqf1o.3 |
|
| iseqf1o.4 |
|
| iseqf1o.6 |
|
| iseqf1o.7 |
|
| iseqf1o.l |
|
| Ref | Expression |
|---|---|
| seq3f1oleml |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1o.1 |
. . 3
| |
| 2 | iseqf1o.2 |
. . 3
| |
| 3 | iseqf1o.3 |
. . 3
| |
| 4 | iseqf1o.4 |
. . 3
| |
| 5 | iseqf1o.6 |
. . 3
| |
| 6 | iseqf1o.7 |
. . 3
| |
| 7 | iseqf1o.l |
. . 3
| |
| 8 | breq1 4085 |
. . . . 5
| |
| 9 | 2fveq3 5631 |
. . . . 5
| |
| 10 | 8, 9 | ifbieq1d 3625 |
. . . 4
|
| 11 | 10 | cbvmptv 4179 |
. . 3
|
| 12 | 1, 2, 3, 4, 5, 6, 7, 11 | seq3f1olemp 10732 |
. 2
|
| 13 | fveq2 5626 |
. . . . . 6
| |
| 14 | id 19 |
. . . . . 6
| |
| 15 | 13, 14 | eqeq12d 2244 |
. . . . 5
|
| 16 | 15 | cbvralv 2765 |
. . . 4
|
| 17 | 16 | 3anbi2i 1215 |
. . 3
|
| 18 | simpr3 1029 |
. . . 4
| |
| 19 | 4 | adantr 276 |
. . . . 5
|
| 20 | elfzuz 10213 |
. . . . . . . 8
| |
| 21 | 20 | adantl 277 |
. . . . . . 7
|
| 22 | elfzle2 10220 |
. . . . . . . . . 10
| |
| 23 | 22 | adantl 277 |
. . . . . . . . 9
|
| 24 | 23 | iftrued 3609 |
. . . . . . . 8
|
| 25 | fveq2 5626 |
. . . . . . . . . . . 12
| |
| 26 | id 19 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | eqeq12d 2244 |
. . . . . . . . . . 11
|
| 28 | simplr2 1064 |
. . . . . . . . . . 11
| |
| 29 | simpr 110 |
. . . . . . . . . . 11
| |
| 30 | 27, 28, 29 | rspcdva 2912 |
. . . . . . . . . 10
|
| 31 | 30 | fveq2d 5630 |
. . . . . . . . 9
|
| 32 | fveq2 5626 |
. . . . . . . . . . 11
| |
| 33 | 32 | eleq1d 2298 |
. . . . . . . . . 10
|
| 34 | 6 | ralrimiva 2603 |
. . . . . . . . . . 11
|
| 35 | 34 | ad2antrr 488 |
. . . . . . . . . 10
|
| 36 | 33, 35, 21 | rspcdva 2912 |
. . . . . . . . 9
|
| 37 | 31, 36 | eqeltrd 2306 |
. . . . . . . 8
|
| 38 | 24, 37 | eqeltrd 2306 |
. . . . . . 7
|
| 39 | breq1 4085 |
. . . . . . . . 9
| |
| 40 | 2fveq3 5631 |
. . . . . . . . 9
| |
| 41 | 39, 40 | ifbieq1d 3625 |
. . . . . . . 8
|
| 42 | eqid 2229 |
. . . . . . . 8
| |
| 43 | 41, 42 | fvmptg 5709 |
. . . . . . 7
|
| 44 | 21, 38, 43 | syl2anc 411 |
. . . . . 6
|
| 45 | 44, 24, 31 | 3eqtrd 2266 |
. . . . 5
|
| 46 | simpr 110 |
. . . . . . 7
| |
| 47 | fveq2 5626 |
. . . . . . . . . 10
| |
| 48 | 47 | eleq1d 2298 |
. . . . . . . . 9
|
| 49 | 34 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 50 | fveq2 5626 |
. . . . . . . . . . . 12
| |
| 51 | 50 | eleq1d 2298 |
. . . . . . . . . . 11
|
| 52 | 51 | cbvralv 2765 |
. . . . . . . . . 10
|
| 53 | 49, 52 | sylibr 134 |
. . . . . . . . 9
|
| 54 | simpr1 1027 |
. . . . . . . . . . . . 13
| |
| 55 | 54 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 56 | f1of 5571 |
. . . . . . . . . . . 12
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
|
| 58 | simpr 110 |
. . . . . . . . . . . 12
| |
| 59 | 46 | adantr 276 |
. . . . . . . . . . . . 13
|
| 60 | eluzelz 9727 |
. . . . . . . . . . . . . . 15
| |
| 61 | 4, 60 | syl 14 |
. . . . . . . . . . . . . 14
|
| 62 | 61 | ad3antrrr 492 |
. . . . . . . . . . . . 13
|
| 63 | elfz5 10209 |
. . . . . . . . . . . . 13
| |
| 64 | 59, 62, 63 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 65 | 58, 64 | mpbird 167 |
. . . . . . . . . . 11
|
| 66 | 57, 65 | ffvelcdmd 5770 |
. . . . . . . . . 10
|
| 67 | elfzuz 10213 |
. . . . . . . . . 10
| |
| 68 | 66, 67 | syl 14 |
. . . . . . . . 9
|
| 69 | 48, 53, 68 | rspcdva 2912 |
. . . . . . . 8
|
| 70 | fveq2 5626 |
. . . . . . . . . 10
| |
| 71 | 70 | eleq1d 2298 |
. . . . . . . . 9
|
| 72 | 34, 52 | sylibr 134 |
. . . . . . . . . 10
|
| 73 | 72 | ad3antrrr 492 |
. . . . . . . . 9
|
| 74 | eluzel2 9723 |
. . . . . . . . . . . 12
| |
| 75 | 4, 74 | syl 14 |
. . . . . . . . . . 11
|
| 76 | 75 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 77 | uzid 9732 |
. . . . . . . . . 10
| |
| 78 | 76, 77 | syl 14 |
. . . . . . . . 9
|
| 79 | 71, 73, 78 | rspcdva 2912 |
. . . . . . . 8
|
| 80 | eluzelz 9727 |
. . . . . . . . . 10
| |
| 81 | 80 | adantl 277 |
. . . . . . . . 9
|
| 82 | 61 | ad2antrr 488 |
. . . . . . . . 9
|
| 83 | zdcle 9519 |
. . . . . . . . 9
| |
| 84 | 81, 82, 83 | syl2anc 411 |
. . . . . . . 8
|
| 85 | 69, 79, 84 | ifcldadc 3632 |
. . . . . . 7
|
| 86 | 10, 42 | fvmptg 5709 |
. . . . . . 7
|
| 87 | 46, 85, 86 | syl2anc 411 |
. . . . . 6
|
| 88 | 87, 85 | eqeltrd 2306 |
. . . . 5
|
| 89 | 6 | adantlr 477 |
. . . . 5
|
| 90 | 1 | adantlr 477 |
. . . . 5
|
| 91 | 19, 45, 88, 89, 90 | seq3fveq 10696 |
. . . 4
|
| 92 | 18, 91 | eqtr3d 2264 |
. . 3
|
| 93 | 17, 92 | sylan2br 288 |
. 2
|
| 94 | 12, 93 | exlimddv 1945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-1o 6560 df-er 6678 df-en 6886 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-fzo 10335 df-seqfrec 10665 |
| This theorem is referenced by: seq3f1o 10734 |
| Copyright terms: Public domain | W3C validator |