Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seq3f1oleml | Unicode version |
Description: Lemma for seq3f1o 10385. This is more or less the result, but stated in terms of and without . and may differ in terms of what happens to terms after . The terms after don't matter for the value at but we need some definition given the way our theorems concerning work. (Contributed by Jim Kingdon, 17-Aug-2022.) |
Ref | Expression |
---|---|
iseqf1o.1 | |
iseqf1o.2 | |
iseqf1o.3 | |
iseqf1o.4 | |
iseqf1o.6 | |
iseqf1o.7 | |
iseqf1o.l |
Ref | Expression |
---|---|
seq3f1oleml |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iseqf1o.1 | . . 3 | |
2 | iseqf1o.2 | . . 3 | |
3 | iseqf1o.3 | . . 3 | |
4 | iseqf1o.4 | . . 3 | |
5 | iseqf1o.6 | . . 3 | |
6 | iseqf1o.7 | . . 3 | |
7 | iseqf1o.l | . . 3 | |
8 | breq1 3968 | . . . . 5 | |
9 | 2fveq3 5470 | . . . . 5 | |
10 | 8, 9 | ifbieq1d 3527 | . . . 4 |
11 | 10 | cbvmptv 4060 | . . 3 |
12 | 1, 2, 3, 4, 5, 6, 7, 11 | seq3f1olemp 10383 | . 2 |
13 | fveq2 5465 | . . . . . 6 | |
14 | id 19 | . . . . . 6 | |
15 | 13, 14 | eqeq12d 2172 | . . . . 5 |
16 | 15 | cbvralv 2680 | . . . 4 |
17 | 16 | 3anbi2i 1174 | . . 3 |
18 | simpr3 990 | . . . 4 | |
19 | 4 | adantr 274 | . . . . 5 |
20 | elfzuz 9906 | . . . . . . . 8 | |
21 | 20 | adantl 275 | . . . . . . 7 |
22 | elfzle2 9912 | . . . . . . . . . 10 | |
23 | 22 | adantl 275 | . . . . . . . . 9 |
24 | 23 | iftrued 3512 | . . . . . . . 8 |
25 | fveq2 5465 | . . . . . . . . . . . 12 | |
26 | id 19 | . . . . . . . . . . . 12 | |
27 | 25, 26 | eqeq12d 2172 | . . . . . . . . . . 11 |
28 | simplr2 1025 | . . . . . . . . . . 11 | |
29 | simpr 109 | . . . . . . . . . . 11 | |
30 | 27, 28, 29 | rspcdva 2821 | . . . . . . . . . 10 |
31 | 30 | fveq2d 5469 | . . . . . . . . 9 |
32 | fveq2 5465 | . . . . . . . . . . 11 | |
33 | 32 | eleq1d 2226 | . . . . . . . . . 10 |
34 | 6 | ralrimiva 2530 | . . . . . . . . . . 11 |
35 | 34 | ad2antrr 480 | . . . . . . . . . 10 |
36 | 33, 35, 21 | rspcdva 2821 | . . . . . . . . 9 |
37 | 31, 36 | eqeltrd 2234 | . . . . . . . 8 |
38 | 24, 37 | eqeltrd 2234 | . . . . . . 7 |
39 | breq1 3968 | . . . . . . . . 9 | |
40 | 2fveq3 5470 | . . . . . . . . 9 | |
41 | 39, 40 | ifbieq1d 3527 | . . . . . . . 8 |
42 | eqid 2157 | . . . . . . . 8 | |
43 | 41, 42 | fvmptg 5541 | . . . . . . 7 |
44 | 21, 38, 43 | syl2anc 409 | . . . . . 6 |
45 | 44, 24, 31 | 3eqtrd 2194 | . . . . 5 |
46 | simpr 109 | . . . . . . 7 | |
47 | fveq2 5465 | . . . . . . . . . 10 | |
48 | 47 | eleq1d 2226 | . . . . . . . . 9 |
49 | 34 | ad3antrrr 484 | . . . . . . . . . 10 |
50 | fveq2 5465 | . . . . . . . . . . . 12 | |
51 | 50 | eleq1d 2226 | . . . . . . . . . . 11 |
52 | 51 | cbvralv 2680 | . . . . . . . . . 10 |
53 | 49, 52 | sylibr 133 | . . . . . . . . 9 |
54 | simpr1 988 | . . . . . . . . . . . . 13 | |
55 | 54 | ad2antrr 480 | . . . . . . . . . . . 12 |
56 | f1of 5411 | . . . . . . . . . . . 12 | |
57 | 55, 56 | syl 14 | . . . . . . . . . . 11 |
58 | simpr 109 | . . . . . . . . . . . 12 | |
59 | 46 | adantr 274 | . . . . . . . . . . . . 13 |
60 | eluzelz 9431 | . . . . . . . . . . . . . . 15 | |
61 | 4, 60 | syl 14 | . . . . . . . . . . . . . 14 |
62 | 61 | ad3antrrr 484 | . . . . . . . . . . . . 13 |
63 | elfz5 9902 | . . . . . . . . . . . . 13 | |
64 | 59, 62, 63 | syl2anc 409 | . . . . . . . . . . . 12 |
65 | 58, 64 | mpbird 166 | . . . . . . . . . . 11 |
66 | 57, 65 | ffvelrnd 5600 | . . . . . . . . . 10 |
67 | elfzuz 9906 | . . . . . . . . . 10 | |
68 | 66, 67 | syl 14 | . . . . . . . . 9 |
69 | 48, 53, 68 | rspcdva 2821 | . . . . . . . 8 |
70 | fveq2 5465 | . . . . . . . . . 10 | |
71 | 70 | eleq1d 2226 | . . . . . . . . 9 |
72 | 34, 52 | sylibr 133 | . . . . . . . . . 10 |
73 | 72 | ad3antrrr 484 | . . . . . . . . 9 |
74 | eluzel2 9427 | . . . . . . . . . . . 12 | |
75 | 4, 74 | syl 14 | . . . . . . . . . . 11 |
76 | 75 | ad3antrrr 484 | . . . . . . . . . 10 |
77 | uzid 9436 | . . . . . . . . . 10 | |
78 | 76, 77 | syl 14 | . . . . . . . . 9 |
79 | 71, 73, 78 | rspcdva 2821 | . . . . . . . 8 |
80 | eluzelz 9431 | . . . . . . . . . 10 | |
81 | 80 | adantl 275 | . . . . . . . . 9 |
82 | 61 | ad2antrr 480 | . . . . . . . . 9 |
83 | zdcle 9223 | . . . . . . . . 9 DECID | |
84 | 81, 82, 83 | syl2anc 409 | . . . . . . . 8 DECID |
85 | 69, 79, 84 | ifcldadc 3534 | . . . . . . 7 |
86 | 10, 42 | fvmptg 5541 | . . . . . . 7 |
87 | 46, 85, 86 | syl2anc 409 | . . . . . 6 |
88 | 87, 85 | eqeltrd 2234 | . . . . 5 |
89 | 6 | adantlr 469 | . . . . 5 |
90 | 1 | adantlr 469 | . . . . 5 |
91 | 19, 45, 88, 89, 90 | seq3fveq 10352 | . . . 4 |
92 | 18, 91 | eqtr3d 2192 | . . 3 |
93 | 17, 92 | sylan2br 286 | . 2 |
94 | 12, 93 | exlimddv 1878 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 DECID wdc 820 w3a 963 wceq 1335 wcel 2128 wral 2435 cif 3505 class class class wbr 3965 cmpt 4025 wf 5163 wf1o 5166 cfv 5167 (class class class)co 5818 cle 7896 cz 9150 cuz 9422 cfz 9894 cseq 10326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-addcom 7815 ax-addass 7817 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-0id 7823 ax-rnegex 7824 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-ilim 4328 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-frec 6332 df-1o 6357 df-er 6473 df-en 6679 df-fin 6681 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-inn 8817 df-n0 9074 df-z 9151 df-uz 9423 df-fz 9895 df-fzo 10024 df-seqfrec 10327 |
This theorem is referenced by: seq3f1o 10385 |
Copyright terms: Public domain | W3C validator |