| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3f1oleml | Unicode version | ||
| Description: Lemma for seq3f1o 10626. This is more or less the result, but
stated
in terms of |
| Ref | Expression |
|---|---|
| iseqf1o.1 |
|
| iseqf1o.2 |
|
| iseqf1o.3 |
|
| iseqf1o.4 |
|
| iseqf1o.6 |
|
| iseqf1o.7 |
|
| iseqf1o.l |
|
| Ref | Expression |
|---|---|
| seq3f1oleml |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1o.1 |
. . 3
| |
| 2 | iseqf1o.2 |
. . 3
| |
| 3 | iseqf1o.3 |
. . 3
| |
| 4 | iseqf1o.4 |
. . 3
| |
| 5 | iseqf1o.6 |
. . 3
| |
| 6 | iseqf1o.7 |
. . 3
| |
| 7 | iseqf1o.l |
. . 3
| |
| 8 | breq1 4037 |
. . . . 5
| |
| 9 | 2fveq3 5566 |
. . . . 5
| |
| 10 | 8, 9 | ifbieq1d 3584 |
. . . 4
|
| 11 | 10 | cbvmptv 4130 |
. . 3
|
| 12 | 1, 2, 3, 4, 5, 6, 7, 11 | seq3f1olemp 10624 |
. 2
|
| 13 | fveq2 5561 |
. . . . . 6
| |
| 14 | id 19 |
. . . . . 6
| |
| 15 | 13, 14 | eqeq12d 2211 |
. . . . 5
|
| 16 | 15 | cbvralv 2729 |
. . . 4
|
| 17 | 16 | 3anbi2i 1193 |
. . 3
|
| 18 | simpr3 1007 |
. . . 4
| |
| 19 | 4 | adantr 276 |
. . . . 5
|
| 20 | elfzuz 10113 |
. . . . . . . 8
| |
| 21 | 20 | adantl 277 |
. . . . . . 7
|
| 22 | elfzle2 10120 |
. . . . . . . . . 10
| |
| 23 | 22 | adantl 277 |
. . . . . . . . 9
|
| 24 | 23 | iftrued 3569 |
. . . . . . . 8
|
| 25 | fveq2 5561 |
. . . . . . . . . . . 12
| |
| 26 | id 19 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | eqeq12d 2211 |
. . . . . . . . . . 11
|
| 28 | simplr2 1042 |
. . . . . . . . . . 11
| |
| 29 | simpr 110 |
. . . . . . . . . . 11
| |
| 30 | 27, 28, 29 | rspcdva 2873 |
. . . . . . . . . 10
|
| 31 | 30 | fveq2d 5565 |
. . . . . . . . 9
|
| 32 | fveq2 5561 |
. . . . . . . . . . 11
| |
| 33 | 32 | eleq1d 2265 |
. . . . . . . . . 10
|
| 34 | 6 | ralrimiva 2570 |
. . . . . . . . . . 11
|
| 35 | 34 | ad2antrr 488 |
. . . . . . . . . 10
|
| 36 | 33, 35, 21 | rspcdva 2873 |
. . . . . . . . 9
|
| 37 | 31, 36 | eqeltrd 2273 |
. . . . . . . 8
|
| 38 | 24, 37 | eqeltrd 2273 |
. . . . . . 7
|
| 39 | breq1 4037 |
. . . . . . . . 9
| |
| 40 | 2fveq3 5566 |
. . . . . . . . 9
| |
| 41 | 39, 40 | ifbieq1d 3584 |
. . . . . . . 8
|
| 42 | eqid 2196 |
. . . . . . . 8
| |
| 43 | 41, 42 | fvmptg 5640 |
. . . . . . 7
|
| 44 | 21, 38, 43 | syl2anc 411 |
. . . . . 6
|
| 45 | 44, 24, 31 | 3eqtrd 2233 |
. . . . 5
|
| 46 | simpr 110 |
. . . . . . 7
| |
| 47 | fveq2 5561 |
. . . . . . . . . 10
| |
| 48 | 47 | eleq1d 2265 |
. . . . . . . . 9
|
| 49 | 34 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 50 | fveq2 5561 |
. . . . . . . . . . . 12
| |
| 51 | 50 | eleq1d 2265 |
. . . . . . . . . . 11
|
| 52 | 51 | cbvralv 2729 |
. . . . . . . . . 10
|
| 53 | 49, 52 | sylibr 134 |
. . . . . . . . 9
|
| 54 | simpr1 1005 |
. . . . . . . . . . . . 13
| |
| 55 | 54 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 56 | f1of 5507 |
. . . . . . . . . . . 12
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
|
| 58 | simpr 110 |
. . . . . . . . . . . 12
| |
| 59 | 46 | adantr 276 |
. . . . . . . . . . . . 13
|
| 60 | eluzelz 9627 |
. . . . . . . . . . . . . . 15
| |
| 61 | 4, 60 | syl 14 |
. . . . . . . . . . . . . 14
|
| 62 | 61 | ad3antrrr 492 |
. . . . . . . . . . . . 13
|
| 63 | elfz5 10109 |
. . . . . . . . . . . . 13
| |
| 64 | 59, 62, 63 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 65 | 58, 64 | mpbird 167 |
. . . . . . . . . . 11
|
| 66 | 57, 65 | ffvelcdmd 5701 |
. . . . . . . . . 10
|
| 67 | elfzuz 10113 |
. . . . . . . . . 10
| |
| 68 | 66, 67 | syl 14 |
. . . . . . . . 9
|
| 69 | 48, 53, 68 | rspcdva 2873 |
. . . . . . . 8
|
| 70 | fveq2 5561 |
. . . . . . . . . 10
| |
| 71 | 70 | eleq1d 2265 |
. . . . . . . . 9
|
| 72 | 34, 52 | sylibr 134 |
. . . . . . . . . 10
|
| 73 | 72 | ad3antrrr 492 |
. . . . . . . . 9
|
| 74 | eluzel2 9623 |
. . . . . . . . . . . 12
| |
| 75 | 4, 74 | syl 14 |
. . . . . . . . . . 11
|
| 76 | 75 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 77 | uzid 9632 |
. . . . . . . . . 10
| |
| 78 | 76, 77 | syl 14 |
. . . . . . . . 9
|
| 79 | 71, 73, 78 | rspcdva 2873 |
. . . . . . . 8
|
| 80 | eluzelz 9627 |
. . . . . . . . . 10
| |
| 81 | 80 | adantl 277 |
. . . . . . . . 9
|
| 82 | 61 | ad2antrr 488 |
. . . . . . . . 9
|
| 83 | zdcle 9419 |
. . . . . . . . 9
| |
| 84 | 81, 82, 83 | syl2anc 411 |
. . . . . . . 8
|
| 85 | 69, 79, 84 | ifcldadc 3591 |
. . . . . . 7
|
| 86 | 10, 42 | fvmptg 5640 |
. . . . . . 7
|
| 87 | 46, 85, 86 | syl2anc 411 |
. . . . . 6
|
| 88 | 87, 85 | eqeltrd 2273 |
. . . . 5
|
| 89 | 6 | adantlr 477 |
. . . . 5
|
| 90 | 1 | adantlr 477 |
. . . . 5
|
| 91 | 19, 45, 88, 89, 90 | seq3fveq 10588 |
. . . 4
|
| 92 | 18, 91 | eqtr3d 2231 |
. . 3
|
| 93 | 17, 92 | sylan2br 288 |
. 2
|
| 94 | 12, 93 | exlimddv 1913 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-1o 6483 df-er 6601 df-en 6809 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-fzo 10235 df-seqfrec 10557 |
| This theorem is referenced by: seq3f1o 10626 |
| Copyright terms: Public domain | W3C validator |