| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3f1oleml | Unicode version | ||
| Description: Lemma for seq3f1o 10662. This is more or less the result, but
stated
in terms of |
| Ref | Expression |
|---|---|
| iseqf1o.1 |
|
| iseqf1o.2 |
|
| iseqf1o.3 |
|
| iseqf1o.4 |
|
| iseqf1o.6 |
|
| iseqf1o.7 |
|
| iseqf1o.l |
|
| Ref | Expression |
|---|---|
| seq3f1oleml |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1o.1 |
. . 3
| |
| 2 | iseqf1o.2 |
. . 3
| |
| 3 | iseqf1o.3 |
. . 3
| |
| 4 | iseqf1o.4 |
. . 3
| |
| 5 | iseqf1o.6 |
. . 3
| |
| 6 | iseqf1o.7 |
. . 3
| |
| 7 | iseqf1o.l |
. . 3
| |
| 8 | breq1 4047 |
. . . . 5
| |
| 9 | 2fveq3 5581 |
. . . . 5
| |
| 10 | 8, 9 | ifbieq1d 3593 |
. . . 4
|
| 11 | 10 | cbvmptv 4140 |
. . 3
|
| 12 | 1, 2, 3, 4, 5, 6, 7, 11 | seq3f1olemp 10660 |
. 2
|
| 13 | fveq2 5576 |
. . . . . 6
| |
| 14 | id 19 |
. . . . . 6
| |
| 15 | 13, 14 | eqeq12d 2220 |
. . . . 5
|
| 16 | 15 | cbvralv 2738 |
. . . 4
|
| 17 | 16 | 3anbi2i 1194 |
. . 3
|
| 18 | simpr3 1008 |
. . . 4
| |
| 19 | 4 | adantr 276 |
. . . . 5
|
| 20 | elfzuz 10143 |
. . . . . . . 8
| |
| 21 | 20 | adantl 277 |
. . . . . . 7
|
| 22 | elfzle2 10150 |
. . . . . . . . . 10
| |
| 23 | 22 | adantl 277 |
. . . . . . . . 9
|
| 24 | 23 | iftrued 3578 |
. . . . . . . 8
|
| 25 | fveq2 5576 |
. . . . . . . . . . . 12
| |
| 26 | id 19 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | eqeq12d 2220 |
. . . . . . . . . . 11
|
| 28 | simplr2 1043 |
. . . . . . . . . . 11
| |
| 29 | simpr 110 |
. . . . . . . . . . 11
| |
| 30 | 27, 28, 29 | rspcdva 2882 |
. . . . . . . . . 10
|
| 31 | 30 | fveq2d 5580 |
. . . . . . . . 9
|
| 32 | fveq2 5576 |
. . . . . . . . . . 11
| |
| 33 | 32 | eleq1d 2274 |
. . . . . . . . . 10
|
| 34 | 6 | ralrimiva 2579 |
. . . . . . . . . . 11
|
| 35 | 34 | ad2antrr 488 |
. . . . . . . . . 10
|
| 36 | 33, 35, 21 | rspcdva 2882 |
. . . . . . . . 9
|
| 37 | 31, 36 | eqeltrd 2282 |
. . . . . . . 8
|
| 38 | 24, 37 | eqeltrd 2282 |
. . . . . . 7
|
| 39 | breq1 4047 |
. . . . . . . . 9
| |
| 40 | 2fveq3 5581 |
. . . . . . . . 9
| |
| 41 | 39, 40 | ifbieq1d 3593 |
. . . . . . . 8
|
| 42 | eqid 2205 |
. . . . . . . 8
| |
| 43 | 41, 42 | fvmptg 5655 |
. . . . . . 7
|
| 44 | 21, 38, 43 | syl2anc 411 |
. . . . . 6
|
| 45 | 44, 24, 31 | 3eqtrd 2242 |
. . . . 5
|
| 46 | simpr 110 |
. . . . . . 7
| |
| 47 | fveq2 5576 |
. . . . . . . . . 10
| |
| 48 | 47 | eleq1d 2274 |
. . . . . . . . 9
|
| 49 | 34 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 50 | fveq2 5576 |
. . . . . . . . . . . 12
| |
| 51 | 50 | eleq1d 2274 |
. . . . . . . . . . 11
|
| 52 | 51 | cbvralv 2738 |
. . . . . . . . . 10
|
| 53 | 49, 52 | sylibr 134 |
. . . . . . . . 9
|
| 54 | simpr1 1006 |
. . . . . . . . . . . . 13
| |
| 55 | 54 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 56 | f1of 5522 |
. . . . . . . . . . . 12
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
|
| 58 | simpr 110 |
. . . . . . . . . . . 12
| |
| 59 | 46 | adantr 276 |
. . . . . . . . . . . . 13
|
| 60 | eluzelz 9657 |
. . . . . . . . . . . . . . 15
| |
| 61 | 4, 60 | syl 14 |
. . . . . . . . . . . . . 14
|
| 62 | 61 | ad3antrrr 492 |
. . . . . . . . . . . . 13
|
| 63 | elfz5 10139 |
. . . . . . . . . . . . 13
| |
| 64 | 59, 62, 63 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 65 | 58, 64 | mpbird 167 |
. . . . . . . . . . 11
|
| 66 | 57, 65 | ffvelcdmd 5716 |
. . . . . . . . . 10
|
| 67 | elfzuz 10143 |
. . . . . . . . . 10
| |
| 68 | 66, 67 | syl 14 |
. . . . . . . . 9
|
| 69 | 48, 53, 68 | rspcdva 2882 |
. . . . . . . 8
|
| 70 | fveq2 5576 |
. . . . . . . . . 10
| |
| 71 | 70 | eleq1d 2274 |
. . . . . . . . 9
|
| 72 | 34, 52 | sylibr 134 |
. . . . . . . . . 10
|
| 73 | 72 | ad3antrrr 492 |
. . . . . . . . 9
|
| 74 | eluzel2 9653 |
. . . . . . . . . . . 12
| |
| 75 | 4, 74 | syl 14 |
. . . . . . . . . . 11
|
| 76 | 75 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 77 | uzid 9662 |
. . . . . . . . . 10
| |
| 78 | 76, 77 | syl 14 |
. . . . . . . . 9
|
| 79 | 71, 73, 78 | rspcdva 2882 |
. . . . . . . 8
|
| 80 | eluzelz 9657 |
. . . . . . . . . 10
| |
| 81 | 80 | adantl 277 |
. . . . . . . . 9
|
| 82 | 61 | ad2antrr 488 |
. . . . . . . . 9
|
| 83 | zdcle 9449 |
. . . . . . . . 9
| |
| 84 | 81, 82, 83 | syl2anc 411 |
. . . . . . . 8
|
| 85 | 69, 79, 84 | ifcldadc 3600 |
. . . . . . 7
|
| 86 | 10, 42 | fvmptg 5655 |
. . . . . . 7
|
| 87 | 46, 85, 86 | syl2anc 411 |
. . . . . 6
|
| 88 | 87, 85 | eqeltrd 2282 |
. . . . 5
|
| 89 | 6 | adantlr 477 |
. . . . 5
|
| 90 | 1 | adantlr 477 |
. . . . 5
|
| 91 | 19, 45, 88, 89, 90 | seq3fveq 10624 |
. . . 4
|
| 92 | 18, 91 | eqtr3d 2240 |
. . 3
|
| 93 | 17, 92 | sylan2br 288 |
. 2
|
| 94 | 12, 93 | exlimddv 1922 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-1o 6502 df-er 6620 df-en 6828 df-fin 6830 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-fzo 10265 df-seqfrec 10593 |
| This theorem is referenced by: seq3f1o 10662 |
| Copyright terms: Public domain | W3C validator |