| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seq3f1oleml | Unicode version | ||
| Description: Lemma for seq3f1o 10699. This is more or less the result, but
stated
in terms of |
| Ref | Expression |
|---|---|
| iseqf1o.1 |
|
| iseqf1o.2 |
|
| iseqf1o.3 |
|
| iseqf1o.4 |
|
| iseqf1o.6 |
|
| iseqf1o.7 |
|
| iseqf1o.l |
|
| Ref | Expression |
|---|---|
| seq3f1oleml |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iseqf1o.1 |
. . 3
| |
| 2 | iseqf1o.2 |
. . 3
| |
| 3 | iseqf1o.3 |
. . 3
| |
| 4 | iseqf1o.4 |
. . 3
| |
| 5 | iseqf1o.6 |
. . 3
| |
| 6 | iseqf1o.7 |
. . 3
| |
| 7 | iseqf1o.l |
. . 3
| |
| 8 | breq1 4062 |
. . . . 5
| |
| 9 | 2fveq3 5604 |
. . . . 5
| |
| 10 | 8, 9 | ifbieq1d 3602 |
. . . 4
|
| 11 | 10 | cbvmptv 4156 |
. . 3
|
| 12 | 1, 2, 3, 4, 5, 6, 7, 11 | seq3f1olemp 10697 |
. 2
|
| 13 | fveq2 5599 |
. . . . . 6
| |
| 14 | id 19 |
. . . . . 6
| |
| 15 | 13, 14 | eqeq12d 2222 |
. . . . 5
|
| 16 | 15 | cbvralv 2742 |
. . . 4
|
| 17 | 16 | 3anbi2i 1194 |
. . 3
|
| 18 | simpr3 1008 |
. . . 4
| |
| 19 | 4 | adantr 276 |
. . . . 5
|
| 20 | elfzuz 10178 |
. . . . . . . 8
| |
| 21 | 20 | adantl 277 |
. . . . . . 7
|
| 22 | elfzle2 10185 |
. . . . . . . . . 10
| |
| 23 | 22 | adantl 277 |
. . . . . . . . 9
|
| 24 | 23 | iftrued 3586 |
. . . . . . . 8
|
| 25 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 26 | id 19 |
. . . . . . . . . . . 12
| |
| 27 | 25, 26 | eqeq12d 2222 |
. . . . . . . . . . 11
|
| 28 | simplr2 1043 |
. . . . . . . . . . 11
| |
| 29 | simpr 110 |
. . . . . . . . . . 11
| |
| 30 | 27, 28, 29 | rspcdva 2889 |
. . . . . . . . . 10
|
| 31 | 30 | fveq2d 5603 |
. . . . . . . . 9
|
| 32 | fveq2 5599 |
. . . . . . . . . . 11
| |
| 33 | 32 | eleq1d 2276 |
. . . . . . . . . 10
|
| 34 | 6 | ralrimiva 2581 |
. . . . . . . . . . 11
|
| 35 | 34 | ad2antrr 488 |
. . . . . . . . . 10
|
| 36 | 33, 35, 21 | rspcdva 2889 |
. . . . . . . . 9
|
| 37 | 31, 36 | eqeltrd 2284 |
. . . . . . . 8
|
| 38 | 24, 37 | eqeltrd 2284 |
. . . . . . 7
|
| 39 | breq1 4062 |
. . . . . . . . 9
| |
| 40 | 2fveq3 5604 |
. . . . . . . . 9
| |
| 41 | 39, 40 | ifbieq1d 3602 |
. . . . . . . 8
|
| 42 | eqid 2207 |
. . . . . . . 8
| |
| 43 | 41, 42 | fvmptg 5678 |
. . . . . . 7
|
| 44 | 21, 38, 43 | syl2anc 411 |
. . . . . 6
|
| 45 | 44, 24, 31 | 3eqtrd 2244 |
. . . . 5
|
| 46 | simpr 110 |
. . . . . . 7
| |
| 47 | fveq2 5599 |
. . . . . . . . . 10
| |
| 48 | 47 | eleq1d 2276 |
. . . . . . . . 9
|
| 49 | 34 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 50 | fveq2 5599 |
. . . . . . . . . . . 12
| |
| 51 | 50 | eleq1d 2276 |
. . . . . . . . . . 11
|
| 52 | 51 | cbvralv 2742 |
. . . . . . . . . 10
|
| 53 | 49, 52 | sylibr 134 |
. . . . . . . . 9
|
| 54 | simpr1 1006 |
. . . . . . . . . . . . 13
| |
| 55 | 54 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 56 | f1of 5544 |
. . . . . . . . . . . 12
| |
| 57 | 55, 56 | syl 14 |
. . . . . . . . . . 11
|
| 58 | simpr 110 |
. . . . . . . . . . . 12
| |
| 59 | 46 | adantr 276 |
. . . . . . . . . . . . 13
|
| 60 | eluzelz 9692 |
. . . . . . . . . . . . . . 15
| |
| 61 | 4, 60 | syl 14 |
. . . . . . . . . . . . . 14
|
| 62 | 61 | ad3antrrr 492 |
. . . . . . . . . . . . 13
|
| 63 | elfz5 10174 |
. . . . . . . . . . . . 13
| |
| 64 | 59, 62, 63 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 65 | 58, 64 | mpbird 167 |
. . . . . . . . . . 11
|
| 66 | 57, 65 | ffvelcdmd 5739 |
. . . . . . . . . 10
|
| 67 | elfzuz 10178 |
. . . . . . . . . 10
| |
| 68 | 66, 67 | syl 14 |
. . . . . . . . 9
|
| 69 | 48, 53, 68 | rspcdva 2889 |
. . . . . . . 8
|
| 70 | fveq2 5599 |
. . . . . . . . . 10
| |
| 71 | 70 | eleq1d 2276 |
. . . . . . . . 9
|
| 72 | 34, 52 | sylibr 134 |
. . . . . . . . . 10
|
| 73 | 72 | ad3antrrr 492 |
. . . . . . . . 9
|
| 74 | eluzel2 9688 |
. . . . . . . . . . . 12
| |
| 75 | 4, 74 | syl 14 |
. . . . . . . . . . 11
|
| 76 | 75 | ad3antrrr 492 |
. . . . . . . . . 10
|
| 77 | uzid 9697 |
. . . . . . . . . 10
| |
| 78 | 76, 77 | syl 14 |
. . . . . . . . 9
|
| 79 | 71, 73, 78 | rspcdva 2889 |
. . . . . . . 8
|
| 80 | eluzelz 9692 |
. . . . . . . . . 10
| |
| 81 | 80 | adantl 277 |
. . . . . . . . 9
|
| 82 | 61 | ad2antrr 488 |
. . . . . . . . 9
|
| 83 | zdcle 9484 |
. . . . . . . . 9
| |
| 84 | 81, 82, 83 | syl2anc 411 |
. . . . . . . 8
|
| 85 | 69, 79, 84 | ifcldadc 3609 |
. . . . . . 7
|
| 86 | 10, 42 | fvmptg 5678 |
. . . . . . 7
|
| 87 | 46, 85, 86 | syl2anc 411 |
. . . . . 6
|
| 88 | 87, 85 | eqeltrd 2284 |
. . . . 5
|
| 89 | 6 | adantlr 477 |
. . . . 5
|
| 90 | 1 | adantlr 477 |
. . . . 5
|
| 91 | 19, 45, 88, 89, 90 | seq3fveq 10661 |
. . . 4
|
| 92 | 18, 91 | eqtr3d 2242 |
. . 3
|
| 93 | 17, 92 | sylan2br 288 |
. 2
|
| 94 | 12, 93 | exlimddv 1923 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-1o 6525 df-er 6643 df-en 6851 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-fzo 10300 df-seqfrec 10630 |
| This theorem is referenced by: seq3f1o 10699 |
| Copyright terms: Public domain | W3C validator |