ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsum3 Unicode version

Theorem fsum3 11379
Description: The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
Hypotheses
Ref Expression
fsum.1  |-  ( k  =  ( F `  n )  ->  B  =  C )
fsum.2  |-  ( ph  ->  M  e.  NN )
fsum.3  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
fsum.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsum.5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
Assertion
Ref Expression
fsum3  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) )
Distinct variable groups:    A, k, n    B, n    C, k    k, F, n    k, G, n   
k, M, n    ph, k, n
Allowed substitution hints:    B( k)    C( n)

Proof of Theorem fsum3
Dummy variables  f  i  j  m  u  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sumdc 11346 . 2  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
2 nnuz 9552 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
3 1zzd 9269 . . . . 5  |-  ( ph  ->  1  e.  ZZ )
4 elnnuz 9553 . . . . . 6  |-  ( x  e.  NN  <->  x  e.  ( ZZ>= `  1 )
)
52eqimss2i 3212 . . . . . . . . . 10  |-  ( ZZ>= ` 
1 )  C_  NN
65sseli 3151 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  1
)  ->  x  e.  NN )
76adantl 277 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  NN )
8 fveq2 5511 . . . . . . . . . . 11  |-  ( n  =  x  ->  ( G `  n )  =  ( G `  x ) )
98eleq1d 2246 . . . . . . . . . 10  |-  ( n  =  x  ->  (
( G `  n
)  e.  CC  <->  ( G `  x )  e.  CC ) )
10 fsum.1 . . . . . . . . . . . 12  |-  ( k  =  ( F `  n )  ->  B  =  C )
11 fsum.2 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  NN )
12 fsum.3 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
13 fsum.4 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
14 fsum.5 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
1510, 11, 12, 13, 14fsumgcl 11378 . . . . . . . . . . 11  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  e.  CC )
1615ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  A. n  e.  ( 1 ... M
) ( G `  n )  e.  CC )
17 1zzd 9269 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  1  e.  ZZ )
1811nnzd 9363 . . . . . . . . . . . . 13  |-  ( ph  ->  M  e.  ZZ )
1918ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  M  e.  ZZ )
20 eluzelz 9526 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  1
)  ->  x  e.  ZZ )
2120ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  x  e.  ZZ )
2217, 19, 213jca 1177 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  ( 1  e.  ZZ  /\  M  e.  ZZ  /\  x  e.  ZZ ) )
23 eluzle 9529 . . . . . . . . . . . . 13  |-  ( x  e.  ( ZZ>= `  1
)  ->  1  <_  x )
2423ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  1  <_  x )
25 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  x  <_  M )
2624, 25jca 306 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  ( 1  <_  x  /\  x  <_  M ) )
27 elfz2 10002 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... M )  <->  ( (
1  e.  ZZ  /\  M  e.  ZZ  /\  x  e.  ZZ )  /\  (
1  <_  x  /\  x  <_  M ) ) )
2822, 26, 27sylanbrc 417 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  x  e.  ( 1 ... M
) )
299, 16, 28rspcdva 2846 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  ( G `  x )  e.  CC )
30 0cnd 7941 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  -.  x  <_  M )  ->  0  e.  CC )
317nnzd 9363 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  x  e.  ZZ )
3218adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  M  e.  ZZ )
33 zdcle 9318 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ )  -> DECID  x  <_  M )
3431, 32, 33syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  -> DECID  x  <_  M )
3529, 30, 34ifcldadc 3563 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  if (
x  <_  M , 
( G `  x
) ,  0 )  e.  CC )
36 breq1 4003 . . . . . . . . . 10  |-  ( n  =  x  ->  (
n  <_  M  <->  x  <_  M ) )
3736, 8ifbieq1d 3556 . . . . . . . . 9  |-  ( n  =  x  ->  if ( n  <_  M , 
( G `  n
) ,  0 )  =  if ( x  <_  M ,  ( G `  x ) ,  0 ) )
38 eqid 2177 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  <_  M , 
( G `  n
) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  M , 
( G `  n
) ,  0 ) )
3937, 38fvmptg 5588 . . . . . . . 8  |-  ( ( x  e.  NN  /\  if ( x  <_  M ,  ( G `  x ) ,  0 )  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  M , 
( G `  n
) ,  0 ) ) `  x )  =  if ( x  <_  M ,  ( G `  x ) ,  0 ) )
407, 35, 39syl2anc 411 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) `  x
)  =  if ( x  <_  M , 
( G `  x
) ,  0 ) )
4140, 35eqeltrd 2254 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) `  x
)  e.  CC )
424, 41sylan2b 287 . . . . 5  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) `  x
)  e.  CC )
432, 3, 42serf 10460 . . . 4  |-  ( ph  ->  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) : NN --> CC )
4443, 11ffvelcdmd 5648 . . 3  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M , 
( G `  n
) ,  0 ) ) ) `  M
)  e.  CC )
4544adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )  ->  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  e.  CC )
46 eleq1w 2238 . . . . . . . . . . . . 13  |-  ( n  =  j  ->  (
n  e.  A  <->  j  e.  A ) )
47 csbeq1 3060 . . . . . . . . . . . . 13  |-  ( n  =  j  ->  [_ n  /  k ]_ B  =  [_ j  /  k ]_ B )
4846, 47ifbieq1d 3556 . . . . . . . . . . . 12  |-  ( n  =  j  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  =  if ( j  e.  A ,  [_ j  /  k ]_ B ,  0 ) )
4948cbvmptv 4096 . . . . . . . . . . 11  |-  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )  =  ( j  e.  ZZ  |->  if ( j  e.  A ,  [_ j  /  k ]_ B ,  0 ) )
5013ralrimiva 2550 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
51 nfcsb1v 3090 . . . . . . . . . . . . . 14  |-  F/_ k [_ j  /  k ]_ B
5251nfel1 2330 . . . . . . . . . . . . 13  |-  F/ k
[_ j  /  k ]_ B  e.  CC
53 csbeq1a 3066 . . . . . . . . . . . . . 14  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
5453eleq1d 2246 . . . . . . . . . . . . 13  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
5552, 54rspc 2835 . . . . . . . . . . . 12  |-  ( j  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ j  /  k ]_ B  e.  CC )
)
5650, 55mpan9 281 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
57 breq1 4003 . . . . . . . . . . . . 13  |-  ( n  =  i  ->  (
n  <_  ( `  A
)  <->  i  <_  ( `  A ) ) )
58 fveq2 5511 . . . . . . . . . . . . . . 15  |-  ( n  =  i  ->  (
f `  n )  =  ( f `  i ) )
5958csbeq1d 3064 . . . . . . . . . . . . . 14  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B )
60 csbco 3067 . . . . . . . . . . . . . 14  |-  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B
6159, 60eqtr4di 2228 . . . . . . . . . . . . 13  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  j ]_ [_ j  /  k ]_ B )
6257, 61ifbieq1d 3556 . . . . . . . . . . . 12  |-  ( n  =  i  ->  if ( n  <_  ( `  A
) ,  [_ (
f `  n )  /  k ]_ B ,  0 )  =  if ( i  <_ 
( `  A ) , 
[_ ( f `  i )  /  j ]_ [_ j  /  k ]_ B ,  0 ) )
6362cbvmptv 4096 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  if ( n  <_  ( `  A
) ,  [_ (
f `  n )  /  k ]_ B ,  0 ) )  =  ( i  e.  NN  |->  if ( i  <_  ( `  A ) ,  [_ ( f `  i )  /  j ]_ [_ j  /  k ]_ B ,  0 ) )
6449, 56, 63, 63summodc 11375 . . . . . . . . . 10  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
65 eleq1w 2238 . . . . . . . . . . . . . . . 16  |-  ( u  =  j  ->  (
u  e.  A  <->  j  e.  A ) )
6665dcbid 838 . . . . . . . . . . . . . . 15  |-  ( u  =  j  ->  (DECID  u  e.  A  <-> DECID  j  e.  A )
)
6766cbvralv 2703 . . . . . . . . . . . . . 14  |-  ( A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  <->  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A )
68673anbi2i 1191 . . . . . . . . . . . . 13  |-  ( ( A  C_  ( ZZ>= `  m )  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
6968rexbii 2484 . . . . . . . . . . . 12  |-  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x ) )
70 1zzd 9269 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  e.  NN  ->  1  e.  ZZ )
71 nnz 9261 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  e.  NN  ->  m  e.  ZZ )
7270, 71fzfigd 10417 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  NN  ->  (
1 ... m )  e. 
Fin )
73 fihasheqf1oi 10751 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 1 ... m
)  e.  Fin  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( `  ( 1 ... m
) )  =  ( `  A ) )
7472, 73sylan 283 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( `  ( 1 ... m
) )  =  ( `  A ) )
75 nnnn0 9172 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( m  e.  NN  ->  m  e.  NN0 )
7675adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  m  e.  NN0 )
77 hashfz1 10747 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( m  e.  NN0  ->  ( `  (
1 ... m ) )  =  m )
7876, 77syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( `  ( 1 ... m
) )  =  m )
7974, 78eqtr3d 2212 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( `  A )  =  m )
8079breq2d 4012 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
n  <_  ( `  A
)  <->  n  <_  m ) )
8180ifbid 3555 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  if ( n  <_  ( `  A
) ,  [_ (
f `  n )  /  k ]_ B ,  0 )  =  if ( n  <_  m ,  [_ ( f `
 n )  / 
k ]_ B ,  0 ) )
8281mpteq2dv 4091 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) )
8382seqeq3d 10439 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) )  =  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) )
8483fveq1d 5513 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) )
8584eqeq2d 2189 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  NN  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (
x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
)  <->  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )
8685pm5.32da 452 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
8786exbidv 1825 . . . . . . . . . . . . 13  |-  ( m  e.  NN  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
8887rexbiia 2492 . . . . . . . . . . . 12  |-  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )
8969, 88orbi12i 764 . . . . . . . . . . 11  |-  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. u  e.  ( ZZ>= `  m )DECID  u  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
9089mobii 2063 . . . . . . . . . 10  |-  ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. u  e.  (
ZZ>= `  m )DECID  u  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  ( `  A ) ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) )  <->  E* x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
9164, 90sylib 122 . . . . . . . . 9  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
9291adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
93 simpr 110 . . . . . . . 8  |-  ( (
ph  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
94 f1of 5457 . . . . . . . . . . . . . 14  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  F :
( 1 ... M
) --> A )
9512, 94syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  F : ( 1 ... M ) --> A )
963, 18fzfigd 10417 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
97 fex 5741 . . . . . . . . . . . . 13  |-  ( ( F : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  Fin )  ->  F  e.  _V )
9895, 96, 97syl2anc 411 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  _V )
9911, 2eleqtrdi 2270 . . . . . . . . . . . . . 14  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
10014ralrimiva 2550 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  =  C )
101 nfv 1528 . . . . . . . . . . . . . . . . . 18  |-  F/ k ( G `  n
)  =  C
102 nfcsb1v 3090 . . . . . . . . . . . . . . . . . . 19  |-  F/_ n [_ k  /  n ]_ C
103102nfeq2 2331 . . . . . . . . . . . . . . . . . 18  |-  F/ n
( G `  k
)  =  [_ k  /  n ]_ C
104 fveq2 5511 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
105 csbeq1a 3066 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  C  =  [_ k  /  n ]_ C )
106104, 105eqeq12d 2192 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  (
( G `  n
)  =  C  <->  ( G `  k )  =  [_ k  /  n ]_ C
) )
107101, 103, 106cbvral 2699 . . . . . . . . . . . . . . . . 17  |-  ( A. n  e.  ( 1 ... M ) ( G `  n )  =  C  <->  A. k  e.  ( 1 ... M
) ( G `  k )  =  [_ k  /  n ]_ C
)
108100, 107sylib 122 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. k  e.  ( 1 ... M ) ( G `  k
)  =  [_ k  /  n ]_ C )
109108r19.21bi 2565 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( G `  k )  =  [_ k  /  n ]_ C )
110 elfznn 10040 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  ( 1 ... M )  ->  k  e.  NN )
111110adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  k  e.  NN )
112 elfzle2 10014 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  e.  ( 1 ... M )  ->  k  <_  M )
113112adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  k  <_  M )
114113iftrued 3541 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  if ( k  <_  M ,  ( G `  k ) ,  0 )  =  ( G `
 k ) )
115104eleq1d 2246 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  (
( G `  n
)  e.  CC  <->  ( G `  k )  e.  CC ) )
11615adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  A. n  e.  ( 1 ... M
) ( G `  n )  e.  CC )
117 simpr 110 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  k  e.  ( 1 ... M
) )
118115, 116, 117rspcdva 2846 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( G `  k )  e.  CC )
119114, 118eqeltrd 2254 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  if ( k  <_  M ,  ( G `  k ) ,  0 )  e.  CC )
120 breq1 4003 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  (
n  <_  M  <->  k  <_  M ) )
121120, 104ifbieq1d 3556 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  if ( n  <_  M , 
( G `  n
) ,  0 )  =  if ( k  <_  M ,  ( G `  k ) ,  0 ) )
122121, 38fvmptg 5588 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  NN  /\  if ( k  <_  M ,  ( G `  k ) ,  0 )  e.  CC )  ->  ( ( n  e.  NN  |->  if ( n  <_  M , 
( G `  n
) ,  0 ) ) `  k )  =  if ( k  <_  M ,  ( G `  k ) ,  0 ) )
123111, 119, 122syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) `  k
)  =  if ( k  <_  M , 
( G `  k
) ,  0 ) )
124123, 114eqtrd 2210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) `  k
)  =  ( G `
 k ) )
125113iftrued 3541 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  if ( k  <_  M ,  [_ k  /  n ]_ C ,  0 )  =  [_ k  /  n ]_ C )
12695ffvelcdmda 5647 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( F `  n )  e.  A )
12710adantl 277 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  n  e.  ( 1 ... M
) )  /\  k  =  ( F `  n ) )  ->  B  =  C )
128126, 127csbied 3103 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  [_ ( F `  n )  /  k ]_ B  =  C )
12950adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  A. k  e.  A  B  e.  CC )
130 nfcsb1v 3090 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  F/_ k [_ ( F `  n
)  /  k ]_ B
131130nfel1 2330 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/ k
[_ ( F `  n )  /  k ]_ B  e.  CC
132 csbeq1a 3066 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( k  =  ( F `  n )  ->  B  =  [_ ( F `  n )  /  k ]_ B )
133132eleq1d 2246 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( k  =  ( F `  n )  ->  ( B  e.  CC  <->  [_ ( F `
 n )  / 
k ]_ B  e.  CC ) )
134131, 133rspc 2835 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F `  n )  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ ( F `  n
)  /  k ]_ B  e.  CC )
)
135126, 129, 134sylc 62 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  [_ ( F `  n )  /  k ]_ B  e.  CC )
136128, 135eqeltrrd 2255 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  C  e.  CC )
137136ralrimiva 2550 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  A. n  e.  ( 1 ... M ) C  e.  CC )
138 nfv 1528 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ k  C  e.  CC
139102nfel1 2330 . . . . . . . . . . . . . . . . . . . . 21  |-  F/ n [_ k  /  n ]_ C  e.  CC
140105eleq1d 2246 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  =  k  ->  ( C  e.  CC  <->  [_ k  /  n ]_ C  e.  CC ) )
141138, 139, 140cbvral 2699 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. n  e.  ( 1 ... M ) C  e.  CC  <->  A. k  e.  ( 1 ... M
) [_ k  /  n ]_ C  e.  CC )
142137, 141sylib 122 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A. k  e.  ( 1 ... M )
[_ k  /  n ]_ C  e.  CC )
143142r19.21bi 2565 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  [_ k  /  n ]_ C  e.  CC )
144125, 143eqeltrd 2254 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  if ( k  <_  M ,  [_ k  /  n ]_ C ,  0 )  e.  CC )
145 nfcv 2319 . . . . . . . . . . . . . . . . . 18  |-  F/_ n
k
146 nfv 1528 . . . . . . . . . . . . . . . . . . 19  |-  F/ n  k  <_  M
147 nfcv 2319 . . . . . . . . . . . . . . . . . . 19  |-  F/_ n
0
148146, 102, 147nfif 3562 . . . . . . . . . . . . . . . . . 18  |-  F/_ n if ( k  <_  M ,  [_ k  /  n ]_ C ,  0 )
149120, 105ifbieq1d 3556 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  if ( n  <_  M ,  C ,  0 )  =  if ( k  <_  M ,  [_ k  /  n ]_ C ,  0 ) )
150 eqid 2177 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) )
151145, 148, 149, 150fvmptf 5604 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  NN  /\  if ( k  <_  M ,  [_ k  /  n ]_ C ,  0 )  e.  CC )  -> 
( ( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) `
 k )  =  if ( k  <_  M ,  [_ k  /  n ]_ C ,  0 ) )
152111, 144, 151syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) `  k )  =  if ( k  <_  M ,  [_ k  /  n ]_ C ,  0 ) )
153152, 125eqtrd 2210 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) `  k )  =  [_ k  /  n ]_ C )
154109, 124, 1533eqtr4d 2220 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) `  k
)  =  ( ( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) `  k ) )
155137ad2antrr 488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  A. n  e.  ( 1 ... M
) C  e.  CC )
156 nfcsb1v 3090 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ n [_ x  /  n ]_ C
157156nfel1 2330 . . . . . . . . . . . . . . . . . . 19  |-  F/ n [_ x  /  n ]_ C  e.  CC
158 csbeq1a 3066 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  x  ->  C  =  [_ x  /  n ]_ C )
159158eleq1d 2246 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  x  ->  ( C  e.  CC  <->  [_ x  /  n ]_ C  e.  CC ) )
160157, 159rspc 2835 . . . . . . . . . . . . . . . . . 18  |-  ( x  e.  ( 1 ... M )  ->  ( A. n  e.  (
1 ... M ) C  e.  CC  ->  [_ x  /  n ]_ C  e.  CC ) )
16128, 155, 160sylc 62 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( ZZ>= `  1 )
)  /\  x  <_  M )  ->  [_ x  /  n ]_ C  e.  CC )
162161, 30, 34ifcldadc 3563 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  if (
x  <_  M ,  [_ x  /  n ]_ C ,  0 )  e.  CC )
163 nfcv 2319 . . . . . . . . . . . . . . . . 17  |-  F/_ n x
164 nfv 1528 . . . . . . . . . . . . . . . . . 18  |-  F/ n  x  <_  M
165164, 156, 147nfif 3562 . . . . . . . . . . . . . . . . 17  |-  F/_ n if ( x  <_  M ,  [_ x  /  n ]_ C ,  0 )
16636, 158ifbieq1d 3556 . . . . . . . . . . . . . . . . 17  |-  ( n  =  x  ->  if ( n  <_  M ,  C ,  0 )  =  if ( x  <_  M ,  [_ x  /  n ]_ C ,  0 ) )
167163, 165, 166, 150fvmptf 5604 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  NN  /\  if ( x  <_  M ,  [_ x  /  n ]_ C ,  0 )  e.  CC )  -> 
( ( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) `
 x )  =  if ( x  <_  M ,  [_ x  /  n ]_ C ,  0 ) )
1687, 162, 167syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) `  x )  =  if ( x  <_  M ,  [_ x  /  n ]_ C ,  0 ) )
169168, 162eqeltrd 2254 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( ZZ>= `  1 )
)  ->  ( (
n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) `  x )  e.  CC )
170 addcl 7927 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
171170adantl 277 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  +  y )  e.  CC )
17299, 154, 41, 169, 171seq3fveq 10457 . . . . . . . . . . . . 13  |-  ( ph  ->  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M , 
( G `  n
) ,  0 ) ) ) `  M
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) ) `  M
) )
17312, 172jca 306 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) ) `  M ) ) )
174 f1oeq1 5445 . . . . . . . . . . . . . 14  |-  ( f  =  F  ->  (
f : ( 1 ... M ) -1-1-onto-> A  <->  F :
( 1 ... M
)
-1-1-onto-> A ) )
175 fveq1 5510 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  F  ->  (
f `  n )  =  ( F `  n ) )
176175csbeq1d 3064 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( F `  n )  /  k ]_ B )
177 vex 2740 . . . . . . . . . . . . . . . . . . . . . . 23  |-  f  e. 
_V
178 vex 2740 . . . . . . . . . . . . . . . . . . . . . . 23  |-  n  e. 
_V
179177, 178fvex 5531 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f `
 n )  e. 
_V
180175, 179eqeltrrdi 2269 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  F  ->  ( F `  n )  e.  _V )
18110adantl 277 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( f  =  F  /\  k  =  ( F `  n ) )  ->  B  =  C )
182180, 181csbied 3103 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  F  ->  [_ ( F `  n )  /  k ]_ B  =  C )
183176, 182eqtrd 2210 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  C )
184183ifeq1d 3551 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  F  ->  if ( n  <_  M ,  [_ ( f `  n
)  /  k ]_ B ,  0 )  =  if ( n  <_  M ,  C ,  0 ) )
185184mpteq2dv 4091 . . . . . . . . . . . . . . . . 17  |-  ( f  =  F  ->  (
n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) )
186185seqeq3d 10439 . . . . . . . . . . . . . . . 16  |-  ( f  =  F  ->  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) )  =  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) ) )
187186fveq1d 5513 . . . . . . . . . . . . . . 15  |-  ( f  =  F  ->  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  M
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) ) `  M
) )
188187eqeq2d 2189 . . . . . . . . . . . . . 14  |-  ( f  =  F  ->  (
(  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  M
)  <->  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) ) `  M ) ) )
189174, 188anbi12d 473 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  M
) )  <->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) ) `  M ) ) ) )
190189spcegv 2825 . . . . . . . . . . . 12  |-  ( F  e.  _V  ->  (
( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  C ,  0 ) ) ) `  M ) )  ->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  M
) ) ) )
19198, 173, 190sylc 62 . . . . . . . . . . 11  |-  ( ph  ->  E. f ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  M
) ) )
192 oveq2 5877 . . . . . . . . . . . . . . 15  |-  ( m  =  M  ->  (
1 ... m )  =  ( 1 ... M
) )
193 f1oeq2 5446 . . . . . . . . . . . . . . 15  |-  ( ( 1 ... m )  =  ( 1 ... M )  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
194192, 193syl 14 . . . . . . . . . . . . . 14  |-  ( m  =  M  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
195 breq2 4004 . . . . . . . . . . . . . . . . . . 19  |-  ( m  =  M  ->  (
n  <_  m  <->  n  <_  M ) )
196195ifbid 3555 . . . . . . . . . . . . . . . . . 18  |-  ( m  =  M  ->  if ( n  <_  m , 
[_ ( f `  n )  /  k ]_ B ,  0 )  =  if ( n  <_  M ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) )
197196mpteq2dv 4091 . . . . . . . . . . . . . . . . 17  |-  ( m  =  M  ->  (
n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) )  =  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) )
198197seqeq3d 10439 . . . . . . . . . . . . . . . 16  |-  ( m  =  M  ->  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) )  =  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) )
199 id 19 . . . . . . . . . . . . . . . 16  |-  ( m  =  M  ->  m  =  M )
200198, 199fveq12d 5518 . . . . . . . . . . . . . . 15  |-  ( m  =  M  ->  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  M
) )
201200eqeq2d 2189 . . . . . . . . . . . . . 14  |-  ( m  =  M  ->  (
(  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)  <->  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  M
) ) )
202194, 201anbi12d 473 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )  <->  ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  M
) ) ) )
203202exbidv 1825 . . . . . . . . . . . 12  |-  ( m  =  M  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  M
) ) ) )
204203rspcev 2841 . . . . . . . . . . 11  |-  ( ( M  e.  NN  /\  E. f ( f : ( 1 ... M
)
-1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  M
) ) )  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) )
20511, 191, 204syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) )
206205olcd 734 . . . . . . . . 9  |-  ( ph  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
207206adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
208 breq2 4004 . . . . . . . . . . . 12  |-  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  ->  (  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x  <->  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) ) )
2092083anbi3d 1318 . . . . . . . . . . 11  |-  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  ->  (
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) ) ) )
210209rexbidv 2478 . . . . . . . . . 10  |-  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) ) ) )
211 eqeq1 2184 . . . . . . . . . . . . 13  |-  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  ->  (
x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
)  <->  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) )
212211anbi2d 464 . . . . . . . . . . . 12  |-  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
213212exbidv 1825 . . . . . . . . . . 11  |-  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
214213rexbidv 2478 . . . . . . . . . 10  |-  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )
215210, 214orbi12d 793 . . . . . . . . 9  |-  ( x  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  ->  (
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )  <->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) ) ) )
216215moi2 2918 . . . . . . . 8  |-  ( ( ( (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  e.  CC  /\ 
E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n
)  /  k ]_ B ,  0 ) ) ) `  m
) ) ) ) )  ->  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) )
21745, 92, 93, 207, 216syl22anc 1239 . . . . . . 7  |-  ( (
ph  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )  ->  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) )
218217ex 115 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )  ->  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) ) )
219206, 215syl5ibrcom 157 . . . . . 6  |-  ( ph  ->  ( x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) ) )
220218, 219impbid 129 . . . . 5  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )  <->  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) ) )
221220adantr 276 . . . 4  |-  ( (
ph  /\  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  e.  CC )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) )  <->  x  =  (  seq 1 (  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) ) )
222221iota5 5194 . . 3  |-  ( (
ph  /\  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M )  e.  CC )  ->  ( iota x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  (
ZZ>= `  m )DECID  j  e.  A  /\  seq m
(  +  ,  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) )
22344, 222mpdan 421 . 2  |-  ( ph  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  A. j  e.  ( ZZ>= `  m )DECID  j  e.  A  /\  seq m (  +  , 
( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  m ,  [_ ( f `  n )  /  k ]_ B ,  0 ) ) ) `  m
) ) ) )  =  (  seq 1
(  +  ,  ( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) )
2241, 223eqtrid 2222 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  seq 1 (  +  , 
( n  e.  NN  |->  if ( n  <_  M ,  ( G `  n ) ,  0 ) ) ) `  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353   E.wex 1492   E*wmo 2027    e. wcel 2148   A.wral 2455   E.wrex 2456   _Vcvv 2737   [_csb 3057    C_ wss 3129   ifcif 3534   class class class wbr 4000    |-> cmpt 4061   iotacio 5172   -->wf 5208   -1-1-onto->wf1o 5211   ` cfv 5212  (class class class)co 5869   Fincfn 6734   CCcc 7800   0cc0 7802   1c1 7803    + caddc 7805    <_ cle 7983   NNcn 8908   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995    seqcseq 10431  ♯chash 10739    ~~> cli 11270   sum_csu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  isumz  11381  fsumf1o  11382  fsumcl2lem  11390  fsumadd  11398  sumsnf  11401  fsummulc2  11440
  Copyright terms: Public domain W3C validator