ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3f1olemp Unicode version

Theorem seq3f1olemp 10732
Description: Lemma for seq3f1o 10734. Existence of a constant permutation of  ( M ... N ) which leads to the same sum as the permutation  F itself. (Contributed by Jim Kingdon, 18-Aug-2022.)
Hypotheses
Ref Expression
iseqf1o.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
iseqf1o.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
iseqf1o.3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
iseqf1o.4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqf1o.6  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1o.7  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqf1o.l  |-  L  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( F `  x ) ) ,  ( G `
 M ) ) )
iseqf1o.p  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
Assertion
Ref Expression
seq3f1olemp  |-  ( ph  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... N
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
Distinct variable groups:    .+ , f, x, y, z    f, F, x, y, z    f, L, x, y, z    f, M, x, y, z    f, N, x, y, z    x, P, y, z    S, f, x, y, z    ph, f, x, y, z    f, G, x
Allowed substitution hints:    P( f)    G( y, z)

Proof of Theorem seq3f1olemp
Dummy variables  g  k  w  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1o.4 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10224 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 oveq2 6008 . . . . . . 7  |-  ( w  =  M  ->  ( M ... w )  =  ( M ... M
) )
54raleqdv 2734 . . . . . 6  |-  ( w  =  M  ->  ( A. x  e.  ( M ... w ) ( f `  x )  =  x  <->  A. x  e.  ( M ... M
) ( f `  x )  =  x ) )
653anbi2d 1351 . . . . 5  |-  ( w  =  M  ->  (
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <-> 
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... M
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
76exbidv 1871 . . . 4  |-  ( w  =  M  ->  ( E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <->  E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... M
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
87imbi2d 230 . . 3  |-  ( w  =  M  ->  (
( ph  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  <->  ( ph  ->  E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... M
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) ) )
9 oveq2 6008 . . . . . . 7  |-  ( w  =  k  ->  ( M ... w )  =  ( M ... k
) )
109raleqdv 2734 . . . . . 6  |-  ( w  =  k  ->  ( A. x  e.  ( M ... w ) ( f `  x )  =  x  <->  A. x  e.  ( M ... k
) ( f `  x )  =  x ) )
11103anbi2d 1351 . . . . 5  |-  ( w  =  k  ->  (
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <-> 
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
1211exbidv 1871 . . . 4  |-  ( w  =  k  ->  ( E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <->  E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
1312imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  <->  ( ph  ->  E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) ) )
14 oveq2 6008 . . . . . . 7  |-  ( w  =  ( k  +  1 )  ->  ( M ... w )  =  ( M ... (
k  +  1 ) ) )
1514raleqdv 2734 . . . . . 6  |-  ( w  =  ( k  +  1 )  ->  ( A. x  e.  ( M ... w ) ( f `  x )  =  x  <->  A. x  e.  ( M ... (
k  +  1 ) ) ( f `  x )  =  x ) )
16153anbi2d 1351 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  (
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <-> 
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
1716exbidv 1871 . . . 4  |-  ( w  =  ( k  +  1 )  ->  ( E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <->  E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
1817imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  <->  ( ph  ->  E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) ) )
19 oveq2 6008 . . . . . . 7  |-  ( w  =  N  ->  ( M ... w )  =  ( M ... N
) )
2019raleqdv 2734 . . . . . 6  |-  ( w  =  N  ->  ( A. x  e.  ( M ... w ) ( f `  x )  =  x  <->  A. x  e.  ( M ... N
) ( f `  x )  =  x ) )
21203anbi2d 1351 . . . . 5  |-  ( w  =  N  ->  (
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <-> 
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... N
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
2221exbidv 1871 . . . 4  |-  ( w  =  N  ->  ( E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <->  E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... N
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
2322imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... w
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  <->  ( ph  ->  E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... N
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) ) )
24 iseqf1o.1 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
25 iseqf1o.2 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
26 iseqf1o.3 . . . . 5  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
27 iseqf1o.6 . . . . 5  |-  ( ph  ->  F : ( M ... N ) -1-1-onto-> ( M ... N ) )
28 iseqf1o.7 . . . . 5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
29 eluzfz1 10223 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
301, 29syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( M ... N ) )
31 ral0 3593 . . . . . . 7  |-  A. x  e.  (/)  ( F `  x )  =  x
32 fzo0 10362 . . . . . . . 8  |-  ( M..^ M )  =  (/)
3332raleqi 2732 . . . . . . 7  |-  ( A. x  e.  ( M..^ M ) ( F `
 x )  =  x  <->  A. x  e.  (/)  ( F `  x )  =  x )
3431, 33mpbir 146 . . . . . 6  |-  A. x  e.  ( M..^ M ) ( F `  x
)  =  x
3534a1i 9 . . . . 5  |-  ( ph  ->  A. x  e.  ( M..^ M ) ( F `  x )  =  x )
36 f1of 5571 . . . . . . . . . 10  |-  ( F : ( M ... N ) -1-1-onto-> ( M ... N
)  ->  F :
( M ... N
) --> ( M ... N ) )
3727, 36syl 14 . . . . . . . . 9  |-  ( ph  ->  F : ( M ... N ) --> ( M ... N ) )
38 eluzel2 9723 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
391, 38syl 14 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
40 eluzelz 9727 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
411, 40syl 14 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
4239, 41fzfigd 10648 . . . . . . . . 9  |-  ( ph  ->  ( M ... N
)  e.  Fin )
43 fex 5867 . . . . . . . . 9  |-  ( ( F : ( M ... N ) --> ( M ... N )  /\  ( M ... N )  e.  Fin )  ->  F  e.  _V )
4437, 42, 43syl2anc 411 . . . . . . . 8  |-  ( ph  ->  F  e.  _V )
45 fveq1 5625 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (
f `  x )  =  ( F `  x ) )
4645fveq2d 5630 . . . . . . . . . . . 12  |-  ( f  =  F  ->  ( G `  ( f `  x ) )  =  ( G `  ( F `  x )
) )
4746ifeq1d 3620 . . . . . . . . . . 11  |-  ( f  =  F  ->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) )  =  if ( x  <_  N ,  ( G `  ( F `
 x ) ) ,  ( G `  M ) ) )
4847mpteq2dv 4174 . . . . . . . . . 10  |-  ( f  =  F  ->  (
x  e.  ( ZZ>= `  M )  |->  if ( x  <_  N , 
( G `  (
f `  x )
) ,  ( G `
 M ) ) )  =  ( x  e.  ( ZZ>= `  M
)  |->  if ( x  <_  N ,  ( G `  ( F `
 x ) ) ,  ( G `  M ) ) ) )
49 iseqf1o.p . . . . . . . . . 10  |-  P  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( f `  x
) ) ,  ( G `  M ) ) )
50 iseqf1o.l . . . . . . . . . 10  |-  L  =  ( x  e.  (
ZZ>= `  M )  |->  if ( x  <_  N ,  ( G `  ( F `  x ) ) ,  ( G `
 M ) ) )
5148, 49, 503eqtr4g 2287 . . . . . . . . 9  |-  ( f  =  F  ->  P  =  L )
5251adantl 277 . . . . . . . 8  |-  ( (
ph  /\  f  =  F )  ->  P  =  L )
5344, 52csbied 3171 . . . . . . 7  |-  ( ph  ->  [_ F  /  f ]_ P  =  L
)
5453seqeq3d 10672 . . . . . 6  |-  ( ph  ->  seq M (  .+  ,  [_ F  /  f ]_ P )  =  seq M (  .+  ,  L ) )
5554fveq1d 5628 . . . . 5  |-  ( ph  ->  (  seq M ( 
.+  ,  [_ F  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )
5624, 25, 26, 1, 27, 28, 30, 27, 35, 55, 49seq3f1olemstep 10731 . . . 4  |-  ( ph  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... M
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
5756a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... M
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
58 nfv 1574 . . . . . . . 8  |-  F/ g ( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )
59 nfv 1574 . . . . . . . . 9  |-  F/ f  g : ( M ... N ) -1-1-onto-> ( M ... N )
60 nfv 1574 . . . . . . . . 9  |-  F/ f A. x  e.  ( M ... k ) ( g `  x
)  =  x
61 nfcv 2372 . . . . . . . . . . . 12  |-  F/_ f M
62 nfcv 2372 . . . . . . . . . . . 12  |-  F/_ f  .+
63 nfcsb1v 3157 . . . . . . . . . . . 12  |-  F/_ f [_ g  /  f ]_ P
6461, 62, 63nfseq 10674 . . . . . . . . . . 11  |-  F/_ f  seq M (  .+  ,  [_ g  /  f ]_ P )
65 nfcv 2372 . . . . . . . . . . 11  |-  F/_ f N
6664, 65nffv 5636 . . . . . . . . . 10  |-  F/_ f
(  seq M (  .+  ,  [_ g  /  f ]_ P ) `  N
)
6766nfeq1 2382 . . . . . . . . 9  |-  F/ f (  seq M ( 
.+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N )
6859, 60, 67nf3an 1612 . . . . . . . 8  |-  F/ f ( g : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( g `  x )  =  x  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )
69 f1oeq1 5559 . . . . . . . . 9  |-  ( f  =  g  ->  (
f : ( M ... N ) -1-1-onto-> ( M ... N )  <->  g :
( M ... N
)
-1-1-onto-> ( M ... N ) ) )
70 fveq1 5625 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
f `  x )  =  ( g `  x ) )
7170eqeq1d 2238 . . . . . . . . . 10  |-  ( f  =  g  ->  (
( f `  x
)  =  x  <->  ( g `  x )  =  x ) )
7271ralbidv 2530 . . . . . . . . 9  |-  ( f  =  g  ->  ( A. x  e.  ( M ... k ) ( f `  x )  =  x  <->  A. x  e.  ( M ... k
) ( g `  x )  =  x ) )
73 csbeq1a 3133 . . . . . . . . . . . 12  |-  ( f  =  g  ->  P  =  [_ g  /  f ]_ P )
7473seqeq3d 10672 . . . . . . . . . . 11  |-  ( f  =  g  ->  seq M (  .+  ,  P )  =  seq M (  .+  ,  [_ g  /  f ]_ P ) )
7574fveq1d 5628 . . . . . . . . . 10  |-  ( f  =  g  ->  (  seq M (  .+  ,  P ) `  N
)  =  (  seq M (  .+  ,  [_ g  /  f ]_ P ) `  N
) )
7675eqeq1d 2238 . . . . . . . . 9  |-  ( f  =  g  ->  (
(  seq M (  .+  ,  P ) `  N
)  =  (  seq M (  .+  ,  L ) `  N
)  <->  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
7769, 72, 763anbi123d 1346 . . . . . . . 8  |-  ( f  =  g  ->  (
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <-> 
( g : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( g `  x )  =  x  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
7858, 68, 77cbvex 1802 . . . . . . 7  |-  ( E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <->  E. g ( g : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( g `  x )  =  x  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
79 fveq2 5626 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
g `  x )  =  ( g `  a ) )
80 id 19 . . . . . . . . . . 11  |-  ( x  =  a  ->  x  =  a )
8179, 80eqeq12d 2244 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( g `  x
)  =  x  <->  ( g `  a )  =  a ) )
8281cbvralv 2765 . . . . . . . . 9  |-  ( A. x  e.  ( M ... k ) ( g `
 x )  =  x  <->  A. a  e.  ( M ... k ) ( g `  a
)  =  a )
83823anbi2i 1215 . . . . . . . 8  |-  ( ( g : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k ) ( g `  x )  =  x  /\  (  seq M (  .+  ,  [_ g  /  f ]_ P ) `  N
)  =  (  seq M (  .+  ,  L ) `  N
) )  <->  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
8483exbii 1651 . . . . . . 7  |-  ( E. g ( g : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( g `  x )  =  x  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <->  E. g ( g : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
8578, 84bitri 184 . . . . . 6  |-  ( E. f ( f : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  <->  E. g ( g : ( M ... N
)
-1-1-onto-> ( M ... N )  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
86 simpll 527 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  ph )
8786, 24sylan 283 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
8886, 25sylan 283 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
8986, 26sylan 283 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  S ) )  -> 
( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
901ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  N  e.  ( ZZ>= `  M )
)
9127ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  F :
( M ... N
)
-1-1-onto-> ( M ... N ) )
9286, 28sylan 283 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
93 fzofzp1 10428 . . . . . . . . . 10  |-  ( k  e.  ( M..^ N
)  ->  ( k  +  1 )  e.  ( M ... N
) )
9493ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  ( k  +  1 )  e.  ( M ... N
) )
95 simpr1 1027 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  g :
( M ... N
)
-1-1-onto-> ( M ... N ) )
96 simpr2 1028 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  A. a  e.  ( M ... k
) ( g `  a )  =  a )
9796, 82sylibr 134 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  A. x  e.  ( M ... k
) ( g `  x )  =  x )
98 elfzoelz 10339 . . . . . . . . . . . 12  |-  ( k  e.  ( M..^ N
)  ->  k  e.  ZZ )
9998ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  k  e.  ZZ )
100 fzval3 10405 . . . . . . . . . . . 12  |-  ( k  e.  ZZ  ->  ( M ... k )  =  ( M..^ ( k  +  1 ) ) )
101100raleqdv 2734 . . . . . . . . . . 11  |-  ( k  e.  ZZ  ->  ( A. x  e.  ( M ... k ) ( g `  x )  =  x  <->  A. x  e.  ( M..^ ( k  +  1 ) ) ( g `  x
)  =  x ) )
10299, 101syl 14 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  ( A. x  e.  ( M ... k ) ( g `
 x )  =  x  <->  A. x  e.  ( M..^ ( k  +  1 ) ) ( g `  x )  =  x ) )
10397, 102mpbid 147 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  A. x  e.  ( M..^ ( k  +  1 ) ) ( g `  x
)  =  x )
104 simpr3 1029 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  (  seq M (  .+  ,  [_ g  /  f ]_ P ) `  N
)  =  (  seq M (  .+  ,  L ) `  N
) )
10587, 88, 89, 90, 91, 92, 94, 95, 103, 104, 49seq3f1olemstep 10731 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( M..^ N ) )  /\  ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
106105ex 115 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( ( g : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
107106exlimdv 1865 . . . . . 6  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( E. g
( g : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. a  e.  ( M ... k
) ( g `  a )  =  a  /\  (  seq M
(  .+  ,  [_ g  /  f ]_ P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
10885, 107biimtrid 152 . . . . 5  |-  ( (
ph  /\  k  e.  ( M..^ N ) )  ->  ( E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) )  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
109108expcom 116 . . . 4  |-  ( k  e.  ( M..^ N
)  ->  ( ph  ->  ( E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... k ) ( f `  x )  =  x  /\  (  seq M (  .+  ,  P ) `  N
)  =  (  seq M (  .+  ,  L ) `  N
) )  ->  E. f
( f : ( M ... N ) -1-1-onto-> ( M ... N )  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) ) )
110109a2d 26 . . 3  |-  ( k  e.  ( M..^ N
)  ->  ( ( ph  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... k
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )  ->  ( ph  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... (
k  +  1 ) ) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) ) )
1118, 13, 18, 23, 57, 110fzind2 10440 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... N
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) ) )
1123, 111mpcom 36 1  |-  ( ph  ->  E. f ( f : ( M ... N ) -1-1-onto-> ( M ... N
)  /\  A. x  e.  ( M ... N
) ( f `  x )  =  x  /\  (  seq M
(  .+  ,  P
) `  N )  =  (  seq M ( 
.+  ,  L ) `
 N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   _Vcvv 2799   [_csb 3124   (/)c0 3491   ifcif 3602   class class class wbr 4082    |-> cmpt 4144   -->wf 5313   -1-1-onto->wf1o 5316   ` cfv 5317  (class class class)co 6000   Fincfn 6885   1c1 7996    + caddc 7998    <_ cle 8178   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200  ..^cfzo 10334    seqcseq 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665
This theorem is referenced by:  seq3f1oleml  10733
  Copyright terms: Public domain W3C validator