ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr3i Unicode version

Theorem 3sstr3i 3233
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr3.1  |-  A  C_  B
3sstr3.2  |-  A  =  C
3sstr3.3  |-  B  =  D
Assertion
Ref Expression
3sstr3i  |-  C  C_  D

Proof of Theorem 3sstr3i
StepHypRef Expression
1 3sstr3.1 . 2  |-  A  C_  B
2 3sstr3.2 . . 3  |-  A  =  C
3 3sstr3.3 . . 3  |-  B  =  D
42, 3sseq12i 3221 . 2  |-  ( A 
C_  B  <->  C  C_  D
)
51, 4mpbi 145 1  |-  C  C_  D
Colors of variables: wff set class
Syntax hints:    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator