ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr3i Unicode version

Theorem 3sstr3i 3182
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr3.1  |-  A  C_  B
3sstr3.2  |-  A  =  C
3sstr3.3  |-  B  =  D
Assertion
Ref Expression
3sstr3i  |-  C  C_  D

Proof of Theorem 3sstr3i
StepHypRef Expression
1 3sstr3.1 . 2  |-  A  C_  B
2 3sstr3.2 . . 3  |-  A  =  C
3 3sstr3.3 . . 3  |-  B  =  D
42, 3sseq12i 3170 . 2  |-  ( A 
C_  B  <->  C  C_  D
)
51, 4mpbi 144 1  |-  C  C_  D
Colors of variables: wff set class
Syntax hints:    = wceq 1343    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator