ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr4i Unicode version

Theorem 3sstr4i 3265
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4.1  |-  A  C_  B
3sstr4.2  |-  C  =  A
3sstr4.3  |-  D  =  B
Assertion
Ref Expression
3sstr4i  |-  C  C_  D

Proof of Theorem 3sstr4i
StepHypRef Expression
1 3sstr4.1 . 2  |-  A  C_  B
2 3sstr4.2 . . 3  |-  C  =  A
3 3sstr4.3 . . 3  |-  D  =  B
42, 3sseq12i 3252 . 2  |-  ( C 
C_  D  <->  A  C_  B
)
51, 4mpbir 146 1  |-  C  C_  D
Colors of variables: wff set class
Syntax hints:    = wceq 1395    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  undif2ss  3567  pwsnss  3882  iinuniss  4048  brab2a  4772  relopabiv  4845  rncoss  4995  imassrn  5079  rnin  5138  inimass  5145  imadiflem  5400  imainlem  5402  ssoprab2i  6093  npsspw  7658  axresscn  8047  mpomulf  8136
  Copyright terms: Public domain W3C validator