ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr4i Unicode version

Theorem 3sstr4i 3234
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4.1  |-  A  C_  B
3sstr4.2  |-  C  =  A
3sstr4.3  |-  D  =  B
Assertion
Ref Expression
3sstr4i  |-  C  C_  D

Proof of Theorem 3sstr4i
StepHypRef Expression
1 3sstr4.1 . 2  |-  A  C_  B
2 3sstr4.2 . . 3  |-  C  =  A
3 3sstr4.3 . . 3  |-  D  =  B
42, 3sseq12i 3221 . 2  |-  ( C 
C_  D  <->  A  C_  B
)
51, 4mpbir 146 1  |-  C  C_  D
Colors of variables: wff set class
Syntax hints:    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  undif2ss  3536  pwsnss  3844  iinuniss  4010  brab2a  4729  relopabiv  4802  rncoss  4950  imassrn  5034  rnin  5093  inimass  5100  imadiflem  5354  imainlem  5356  ssoprab2i  6036  npsspw  7586  axresscn  7975  mpomulf  8064
  Copyright terms: Public domain W3C validator