ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr4i Unicode version

Theorem 3sstr4i 3198
Description: Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4.1  |-  A  C_  B
3sstr4.2  |-  C  =  A
3sstr4.3  |-  D  =  B
Assertion
Ref Expression
3sstr4i  |-  C  C_  D

Proof of Theorem 3sstr4i
StepHypRef Expression
1 3sstr4.1 . 2  |-  A  C_  B
2 3sstr4.2 . . 3  |-  C  =  A
3 3sstr4.3 . . 3  |-  D  =  B
42, 3sseq12i 3185 . 2  |-  ( C 
C_  D  <->  A  C_  B
)
51, 4mpbir 146 1  |-  C  C_  D
Colors of variables: wff set class
Syntax hints:    = wceq 1353    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144
This theorem is referenced by:  undif2ss  3500  pwsnss  3805  iinuniss  3971  brab2a  4681  rncoss  4899  imassrn  4983  rnin  5040  inimass  5047  imadiflem  5297  imainlem  5299  ssoprab2i  5967  npsspw  7473  axresscn  7862
  Copyright terms: Public domain W3C validator