ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12i Unicode version

Theorem sseq12i 3221
Description: An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
sseq1i.1  |-  A  =  B
sseq12i.2  |-  C  =  D
Assertion
Ref Expression
sseq12i  |-  ( A 
C_  C  <->  B  C_  D
)

Proof of Theorem sseq12i
StepHypRef Expression
1 sseq1i.1 . 2  |-  A  =  B
2 sseq12i.2 . 2  |-  C  =  D
3 sseq12 3218 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C  <->  B 
C_  D ) )
41, 2, 3mp2an 426 1  |-  ( A 
C_  C  <->  B  C_  D
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  3sstr3i  3233  3sstr4i  3234  3sstr3g  3235  3sstr4g  3236  ss2rab  3269
  Copyright terms: Public domain W3C validator