ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrd Unicode version

Theorem sseqtrrd 3196
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrrd.1  |-  ( ph  ->  A  C_  B )
sseqtrrd.2  |-  ( ph  ->  C  =  B )
Assertion
Ref Expression
sseqtrrd  |-  ( ph  ->  A  C_  C )

Proof of Theorem sseqtrrd
StepHypRef Expression
1 sseqtrrd.1 . 2  |-  ( ph  ->  A  C_  B )
2 sseqtrrd.2 . . 3  |-  ( ph  ->  C  =  B )
32eqcomd 2183 . 2  |-  ( ph  ->  B  =  C )
41, 3sseqtrd 3195 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    C_ wss 3131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-in 3137  df-ss 3144
This theorem is referenced by:  sseqtrrid  3208  fnfvima  5754  tfrlemiubacc  6334  tfr1onlemubacc  6350  tfrcllemubacc  6363  rdgivallem  6385  nnnninf  7127  nninfwlpoimlemg  7176  dfphi2  12223  ctinf  12434  imasaddfnlemg  12741  imasaddvallemg  12742  subsubg  13063  subsubrg  13372  lidlss  13565  toponss  13666  ssntr  13762  iscnp3  13843  cnprcl2k  13846  tgcn  13848  tgcnp  13849  ssidcn  13850  cncnp  13870  txcnp  13911  imasnopn  13939  hmeontr  13953  blssec  14078  blssopn  14125  xmettx  14150  metcnp  14152  nnsf  14895  nninfsellemsuc  14902
  Copyright terms: Public domain W3C validator