ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrd Unicode version

Theorem sseqtrrd 3263
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrrd.1  |-  ( ph  ->  A  C_  B )
sseqtrrd.2  |-  ( ph  ->  C  =  B )
Assertion
Ref Expression
sseqtrrd  |-  ( ph  ->  A  C_  C )

Proof of Theorem sseqtrrd
StepHypRef Expression
1 sseqtrrd.1 . 2  |-  ( ph  ->  A  C_  B )
2 sseqtrrd.2 . . 3  |-  ( ph  ->  C  =  B )
32eqcomd 2235 . 2  |-  ( ph  ->  B  =  C )
41, 3sseqtrd 3262 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  sseqtrrid  3275  fnfvima  5873  tfrlemiubacc  6474  tfr1onlemubacc  6490  tfrcllemubacc  6503  rdgivallem  6525  nnnninf  7289  nninfwlpoimlemg  7338  ccatass  11138  swrdval2  11178  dfphi2  12737  ctinf  12996  imasaddfnlemg  13342  imasaddvallemg  13343  subsubm  13511  subsubg  13729  subsubrng  14172  subsubrg  14203  lidlss  14434  toponss  14694  ssntr  14790  iscnp3  14871  cnprcl2k  14874  tgcn  14876  tgcnp  14877  ssidcn  14878  cncnp  14898  txcnp  14939  imasnopn  14967  hmeontr  14981  blssec  15106  blssopn  15153  xmettx  15178  metcnp  15180  plyaddlem1  15415  plymullem1  15416  plycoeid3  15425  nnsf  16330  nninfsellemsuc  16337
  Copyright terms: Public domain W3C validator