Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseqtrrd | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
sseqtrrd.1 | |
sseqtrrd.2 |
Ref | Expression |
---|---|
sseqtrrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrrd.1 | . 2 | |
2 | sseqtrrd.2 | . . 3 | |
3 | 2 | eqcomd 2176 | . 2 |
4 | 1, 3 | sseqtrd 3185 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wss 3121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-in 3127 df-ss 3134 |
This theorem is referenced by: sseqtrrid 3198 fnfvima 5727 tfrlemiubacc 6306 tfr1onlemubacc 6322 tfrcllemubacc 6335 rdgivallem 6357 nnnninf 7098 dfphi2 12161 ctinf 12372 toponss 12777 ssntr 12875 iscnp3 12956 cnprcl2k 12959 tgcn 12961 tgcnp 12962 ssidcn 12963 cncnp 12983 txcnp 13024 imasnopn 13052 hmeontr 13066 blssec 13191 blssopn 13238 xmettx 13263 metcnp 13265 nnsf 13998 nninfsellemsuc 14005 |
Copyright terms: Public domain | W3C validator |