| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrd.1 |
|
| sseqtrrd.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrd.1 |
. 2
| |
| 2 | sseqtrrd.2 |
. . 3
| |
| 3 | 2 | eqcomd 2202 |
. 2
|
| 4 | 1, 3 | sseqtrd 3222 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: sseqtrrid 3235 fnfvima 5800 tfrlemiubacc 6397 tfr1onlemubacc 6413 tfrcllemubacc 6426 rdgivallem 6448 nnnninf 7201 nninfwlpoimlemg 7250 dfphi2 12413 ctinf 12672 imasaddfnlemg 13016 imasaddvallemg 13017 subsubm 13185 subsubg 13403 subsubrng 13846 subsubrg 13877 lidlss 14108 toponss 14346 ssntr 14442 iscnp3 14523 cnprcl2k 14526 tgcn 14528 tgcnp 14529 ssidcn 14530 cncnp 14550 txcnp 14591 imasnopn 14619 hmeontr 14633 blssec 14758 blssopn 14805 xmettx 14830 metcnp 14832 plyaddlem1 15067 plymullem1 15068 plycoeid3 15077 nnsf 15736 nninfsellemsuc 15743 |
| Copyright terms: Public domain | W3C validator |