| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrd.1 |
|
| sseqtrrd.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrd.1 |
. 2
| |
| 2 | sseqtrrd.2 |
. . 3
| |
| 3 | 2 | eqcomd 2235 |
. 2
|
| 4 | 1, 3 | sseqtrd 3262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: sseqtrrid 3275 fnfvima 5873 tfrlemiubacc 6474 tfr1onlemubacc 6490 tfrcllemubacc 6503 rdgivallem 6525 nnnninf 7289 nninfwlpoimlemg 7338 ccatass 11138 swrdval2 11178 dfphi2 12737 ctinf 12996 imasaddfnlemg 13342 imasaddvallemg 13343 subsubm 13511 subsubg 13729 subsubrng 14172 subsubrg 14203 lidlss 14434 toponss 14694 ssntr 14790 iscnp3 14871 cnprcl2k 14874 tgcn 14876 tgcnp 14877 ssidcn 14878 cncnp 14898 txcnp 14939 imasnopn 14967 hmeontr 14981 blssec 15106 blssopn 15153 xmettx 15178 metcnp 15180 plyaddlem1 15415 plymullem1 15416 plycoeid3 15425 nnsf 16330 nninfsellemsuc 16337 |
| Copyright terms: Public domain | W3C validator |