ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrd Unicode version

Theorem sseqtrrd 3240
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrrd.1  |-  ( ph  ->  A  C_  B )
sseqtrrd.2  |-  ( ph  ->  C  =  B )
Assertion
Ref Expression
sseqtrrd  |-  ( ph  ->  A  C_  C )

Proof of Theorem sseqtrrd
StepHypRef Expression
1 sseqtrrd.1 . 2  |-  ( ph  ->  A  C_  B )
2 sseqtrrd.2 . . 3  |-  ( ph  ->  C  =  B )
32eqcomd 2213 . 2  |-  ( ph  ->  B  =  C )
41, 3sseqtrd 3239 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187
This theorem is referenced by:  sseqtrrid  3252  fnfvima  5842  tfrlemiubacc  6439  tfr1onlemubacc  6455  tfrcllemubacc  6468  rdgivallem  6490  nnnninf  7254  nninfwlpoimlemg  7303  ccatass  11102  swrdval2  11142  dfphi2  12657  ctinf  12916  imasaddfnlemg  13261  imasaddvallemg  13262  subsubm  13430  subsubg  13648  subsubrng  14091  subsubrg  14122  lidlss  14353  toponss  14613  ssntr  14709  iscnp3  14790  cnprcl2k  14793  tgcn  14795  tgcnp  14796  ssidcn  14797  cncnp  14817  txcnp  14858  imasnopn  14886  hmeontr  14900  blssec  15025  blssopn  15072  xmettx  15097  metcnp  15099  plyaddlem1  15334  plymullem1  15335  plycoeid3  15344  nnsf  16144  nninfsellemsuc  16151
  Copyright terms: Public domain W3C validator