| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrd.1 |
|
| sseqtrrd.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrd.1 |
. 2
| |
| 2 | sseqtrrd.2 |
. . 3
| |
| 3 | 2 | eqcomd 2213 |
. 2
|
| 4 | 1, 3 | sseqtrd 3239 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: sseqtrrid 3252 fnfvima 5842 tfrlemiubacc 6439 tfr1onlemubacc 6455 tfrcllemubacc 6468 rdgivallem 6490 nnnninf 7254 nninfwlpoimlemg 7303 ccatass 11102 swrdval2 11142 dfphi2 12657 ctinf 12916 imasaddfnlemg 13261 imasaddvallemg 13262 subsubm 13430 subsubg 13648 subsubrng 14091 subsubrg 14122 lidlss 14353 toponss 14613 ssntr 14709 iscnp3 14790 cnprcl2k 14793 tgcn 14795 tgcnp 14796 ssidcn 14797 cncnp 14817 txcnp 14858 imasnopn 14886 hmeontr 14900 blssec 15025 blssopn 15072 xmettx 15097 metcnp 15099 plyaddlem1 15334 plymullem1 15335 plycoeid3 15344 nnsf 16144 nninfsellemsuc 16151 |
| Copyright terms: Public domain | W3C validator |