| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseqtrrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| sseqtrrd.1 |
|
| sseqtrrd.2 |
|
| Ref | Expression |
|---|---|
| sseqtrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseqtrrd.1 |
. 2
| |
| 2 | sseqtrrd.2 |
. . 3
| |
| 3 | 2 | eqcomd 2211 |
. 2
|
| 4 | 1, 3 | sseqtrd 3231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: sseqtrrid 3244 fnfvima 5819 tfrlemiubacc 6416 tfr1onlemubacc 6432 tfrcllemubacc 6445 rdgivallem 6467 nnnninf 7228 nninfwlpoimlemg 7277 ccatass 11064 swrdval2 11104 dfphi2 12542 ctinf 12801 imasaddfnlemg 13146 imasaddvallemg 13147 subsubm 13315 subsubg 13533 subsubrng 13976 subsubrg 14007 lidlss 14238 toponss 14498 ssntr 14594 iscnp3 14675 cnprcl2k 14678 tgcn 14680 tgcnp 14681 ssidcn 14682 cncnp 14702 txcnp 14743 imasnopn 14771 hmeontr 14785 blssec 14910 blssopn 14957 xmettx 14982 metcnp 14984 plyaddlem1 15219 plymullem1 15220 plycoeid3 15229 nnsf 15942 nninfsellemsuc 15949 |
| Copyright terms: Public domain | W3C validator |