ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseqtrrd Unicode version

Theorem sseqtrrd 3218
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
sseqtrrd.1  |-  ( ph  ->  A  C_  B )
sseqtrrd.2  |-  ( ph  ->  C  =  B )
Assertion
Ref Expression
sseqtrrd  |-  ( ph  ->  A  C_  C )

Proof of Theorem sseqtrrd
StepHypRef Expression
1 sseqtrrd.1 . 2  |-  ( ph  ->  A  C_  B )
2 sseqtrrd.2 . . 3  |-  ( ph  ->  C  =  B )
32eqcomd 2199 . 2  |-  ( ph  ->  B  =  C )
41, 3sseqtrd 3217 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166
This theorem is referenced by:  sseqtrrid  3230  fnfvima  5793  tfrlemiubacc  6383  tfr1onlemubacc  6399  tfrcllemubacc  6412  rdgivallem  6434  nnnninf  7185  nninfwlpoimlemg  7234  dfphi2  12358  ctinf  12587  imasaddfnlemg  12897  imasaddvallemg  12898  subsubm  13055  subsubg  13267  subsubrng  13710  subsubrg  13741  lidlss  13972  toponss  14194  ssntr  14290  iscnp3  14371  cnprcl2k  14374  tgcn  14376  tgcnp  14377  ssidcn  14378  cncnp  14398  txcnp  14439  imasnopn  14467  hmeontr  14481  blssec  14606  blssopn  14653  xmettx  14678  metcnp  14680  plyaddlem1  14893  plymullem1  14894  nnsf  15495  nninfsellemsuc  15502
  Copyright terms: Public domain W3C validator