Theorem List for Intuitionistic Logic Explorer - 3101-3200   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | sbcnel12g 3101 | 
Distribute proper substitution through negated membership.  (Contributed
     by Andrew Salmon, 18-Jun-2011.)
 | 
                  ![].  ].](_drbrack.gif)               ![]_  ]_](_urbrack.gif)           ![]_  ]_](_urbrack.gif)     | 
|   | 
| Theorem | sbcne12g 3102 | 
Distribute proper substitution through an inequality.  (Contributed by
     Andrew Salmon, 18-Jun-2011.)
 | 
                  ![].  ].](_drbrack.gif)               ![]_  ]_](_urbrack.gif)           ![]_  ]_](_urbrack.gif)     | 
|   | 
| Theorem | sbcel1g 3103* | 
Move proper substitution in and out of a membership relation.  Note that
       the scope of         is the wff      , whereas the scope
       of         is the class  .  (Contributed by NM,
       10-Nov-2005.)
 | 
                  ![].  ].](_drbrack.gif)               ![]_  ]_](_urbrack.gif)    
     | 
|   | 
| Theorem | sbceq1g 3104* | 
Move proper substitution to first argument of an equality.  (Contributed
       by NM, 30-Nov-2005.)
 | 
                  ![].  ].](_drbrack.gif)               ![]_  ]_](_urbrack.gif)    
     | 
|   | 
| Theorem | sbcel2g 3105* | 
Move proper substitution in and out of a membership relation.
       (Contributed by NM, 14-Nov-2005.)
 | 
                  ![].  ].](_drbrack.gif)                   ![]_  ]_](_urbrack.gif)     | 
|   | 
| Theorem | sbceq2g 3106* | 
Move proper substitution to second argument of an equality.
       (Contributed by NM, 30-Nov-2005.)
 | 
                  ![].  ].](_drbrack.gif)                   ![]_  ]_](_urbrack.gif)     | 
|   | 
| Theorem | csbcomg 3107* | 
Commutative law for double substitution into a class.  (Contributed by
       NM, 14-Nov-2005.)
 | 
                           ![]_  ]_](_urbrack.gif)       ![]_  ]_](_urbrack.gif)  
         ![]_  ]_](_urbrack.gif)       ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | csbeq2 3108 | 
Substituting into equivalent classes gives equivalent results.
       (Contributed by Giovanni Mascellani, 9-Apr-2018.)
 | 
           
         ![]_  ]_](_urbrack.gif)           ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | csbeq2d 3109 | 
Formula-building deduction for class substitution.  (Contributed by NM,
       22-Nov-2005.)  (Revised by Mario Carneiro, 1-Sep-2015.)
 | 
                                             ![]_  ]_](_urbrack.gif)    
       ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | csbeq2dv 3110* | 
Formula-building deduction for class substitution.  (Contributed by NM,
       10-Nov-2005.)  (Revised by Mario Carneiro, 1-Sep-2015.)
 | 
                                 ![]_  ]_](_urbrack.gif)           ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | csbeq2i 3111 | 
Formula-building inference for class substitution.  (Contributed by NM,
       10-Nov-2005.)  (Revised by Mario Carneiro, 1-Sep-2015.)
 | 
                      ![]_  ]_](_urbrack.gif)           ![]_  ]_](_urbrack.gif)   | 
|   | 
| Theorem | csbvarg 3112 | 
The proper substitution of a class for setvar variable results in the
       class (if the class exists).  (Contributed by NM, 10-Nov-2005.)
 | 
                 ![]_  ]_](_urbrack.gif)        | 
|   | 
| Theorem | sbccsbg 3113* | 
Substitution into a wff expressed in terms of substitution into a class.
       (Contributed by NM, 15-Aug-2007.)
 | 
                  ![].  ].](_drbrack.gif)  
    
         ![]_  ]_](_urbrack.gif)           | 
|   | 
| Theorem | sbccsb2g 3114 | 
Substitution into a wff expressed in using substitution into a class.
     (Contributed by NM, 27-Nov-2005.)
 | 
                  ![].  ].](_drbrack.gif)  
    
         ![]_  ]_](_urbrack.gif)           | 
|   | 
| Theorem | nfcsb1d 3115 | 
Bound-variable hypothesis builder for substitution into a class.
       (Contributed by Mario Carneiro, 12-Oct-2016.)
 | 
                                 ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | nfcsb1 3116 | 
Bound-variable hypothesis builder for substitution into a class.
       (Contributed by Mario Carneiro, 12-Oct-2016.)
 | 
                      ![]_  ]_](_urbrack.gif)   | 
|   | 
| Theorem | nfcsb1v 3117* | 
Bound-variable hypothesis builder for substitution into a class.
       (Contributed by NM, 17-Aug-2006.)  (Revised by Mario Carneiro,
       12-Oct-2016.)
 | 
          ![]_  ]_](_urbrack.gif)   | 
|   | 
| Theorem | nfsbcdw 3118* | 
Version of nfsbcd 3009 with a disjoint variable condition. 
(Contributed by
       NM, 23-Nov-2005.)  (Revised by GG, 10-Jan-2024.)
 | 
                                                               ![].  ].](_drbrack.gif)    | 
|   | 
| Theorem | nfsbcw 3119* | 
Bound-variable hypothesis builder for class substitution.  Version of
       nfsbc 3010 with a disjoint variable condition, which in
the future may make
       it possible to reduce axiom usage.  (Contributed by NM, 7-Sep-2014.)
       (Revised by GG, 10-Jan-2024.)
 | 
                                  ![].  ].](_drbrack.gif)   | 
|   | 
| Theorem | nfcsbd 3120 | 
Deduction version of nfcsb 3122.  (Contributed by NM, 21-Nov-2005.)
       (Revised by Mario Carneiro, 12-Oct-2016.)
 | 
                                                      
         ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | nfcsbw 3121* | 
Bound-variable hypothesis builder for substitution into a class.
       Version of nfcsb 3122 with a disjoint variable condition. 
(Contributed by
       Mario Carneiro, 12-Oct-2016.)  (Revised by GG, 10-Jan-2024.)
 | 
                                  ![]_  ]_](_urbrack.gif)   | 
|   | 
| Theorem | nfcsb 3122 | 
Bound-variable hypothesis builder for substitution into a class.
       (Contributed by Mario Carneiro, 12-Oct-2016.)
 | 
                                  ![]_  ]_](_urbrack.gif)   | 
|   | 
| Theorem | csbhypf 3123* | 
Introduce an explicit substitution into an implicit substitution
       hypothesis.  See sbhypf 2813 for class substitution version.  (Contributed
       by NM, 19-Dec-2008.)
 | 
                              
                            
       ![]_  ]_](_urbrack.gif)        | 
|   | 
| Theorem | csbiebt 3124* | 
Conversion of implicit substitution to explicit substitution into a
       class.  (Closed theorem version of csbiegf 3128.)  (Contributed by NM,
       11-Nov-2005.)
 | 
                                              ![]_  ]_](_urbrack.gif)         | 
|   | 
| Theorem | csbiedf 3125* | 
Conversion of implicit substitution to explicit substitution into a
       class.  (Contributed by Mario Carneiro, 13-Oct-2016.)
 | 
                                                                                             ![]_  ]_](_urbrack.gif)        | 
|   | 
| Theorem | csbieb 3126* | 
Bidirectional conversion between an implicit class substitution
       hypothesis               and its explicit substitution equivalent.
       (Contributed by NM, 2-Mar-2008.)
 | 
                                                       ![]_  ]_](_urbrack.gif)        | 
|   | 
| Theorem | csbiebg 3127* | 
Bidirectional conversion between an implicit class substitution
       hypothesis               and its explicit substitution equivalent.
       (Contributed by NM, 24-Mar-2013.)  (Revised by Mario Carneiro,
       11-Dec-2016.)
 | 
                                                  ![]_  ]_](_urbrack.gif)         | 
|   | 
| Theorem | csbiegf 3128* | 
Conversion of implicit substitution to explicit substitution into a
       class.  (Contributed by NM, 11-Nov-2005.)  (Revised by Mario Carneiro,
       13-Oct-2016.)
 | 
                          
                        
             ![]_  ]_](_urbrack.gif)        | 
|   | 
| Theorem | csbief 3129* | 
Conversion of implicit substitution to explicit substitution into a
       class.  (Contributed by NM, 26-Nov-2005.)  (Revised by Mario Carneiro,
       13-Oct-2016.)
 | 
                                                          ![]_  ]_](_urbrack.gif)    
   | 
|   | 
| Theorem | csbie 3130* | 
Conversion of implicit substitution to explicit substitution into a
       class.  (Contributed by AV, 2-Dec-2019.)
 | 
                    
                          ![]_  ]_](_urbrack.gif)       | 
|   | 
| Theorem | csbied 3131* | 
Conversion of implicit substitution to explicit substitution into a
       class.  (Contributed by Mario Carneiro, 2-Dec-2014.)  (Revised by Mario
       Carneiro, 13-Oct-2016.)
 | 
                                                        
       ![]_  ]_](_urbrack.gif)        | 
|   | 
| Theorem | csbied2 3132* | 
Conversion of implicit substitution to explicit class substitution,
       deduction form.  (Contributed by Mario Carneiro, 2-Jan-2017.)
 | 
                                             
                                      ![]_  ]_](_urbrack.gif)        | 
|   | 
| Theorem | csbie2t 3133* | 
Conversion of implicit substitution to explicit substitution into a
       class (closed form of csbie2 3134).  (Contributed by NM, 3-Sep-2007.)
       (Revised by Mario Carneiro, 13-Oct-2016.)
 | 
                                                                     ![]_  ]_](_urbrack.gif)       ![]_  ]_](_urbrack.gif)        | 
|   | 
| Theorem | csbie2 3134* | 
Conversion of implicit substitution to explicit substitution into a
       class.  (Contributed by NM, 27-Aug-2007.)
 | 
                                                                  
    ![]_  ]_](_urbrack.gif)       ![]_  ]_](_urbrack.gif)  
     | 
|   | 
| Theorem | csbie2g 3135* | 
Conversion of implicit substitution to explicit class substitution.
       This version of sbcie 3024 avoids a disjointness condition on   and
         by
substituting twice.  (Contributed by Mario Carneiro,
       11-Nov-2016.)
 | 
                            
                        
             ![]_  ]_](_urbrack.gif)        | 
|   | 
| Theorem | sbcnestgf 3136 | 
Nest the composition of two substitutions.  (Contributed by Mario
       Carneiro, 11-Nov-2016.)
 | 
                            ![].  ].](_drbrack.gif)       ![].  ].](_drbrack.gif)            ![]_  ]_](_urbrack.gif)      ![].  ].](_drbrack.gif)     | 
|   | 
| Theorem | csbnestgf 3137 | 
Nest the composition of two substitutions.  (Contributed by NM,
       23-Nov-2005.)  (Proof shortened by Mario Carneiro, 10-Nov-2016.)
 | 
                           ![]_  ]_](_urbrack.gif)       ![]_  ]_](_urbrack.gif)            ![]_  ]_](_urbrack.gif)      ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | sbcnestg 3138* | 
Nest the composition of two substitutions.  (Contributed by NM,
       27-Nov-2005.)  (Proof shortened by Mario Carneiro, 11-Nov-2016.)
 | 
                  ![].  ].](_drbrack.gif)       ![].  ].](_drbrack.gif)  
          ![]_  ]_](_urbrack.gif)      ![].  ].](_drbrack.gif)     | 
|   | 
| Theorem | csbnestg 3139* | 
Nest the composition of two substitutions.  (Contributed by NM,
       23-Nov-2005.)  (Proof shortened by Mario Carneiro, 10-Nov-2016.)
 | 
                 ![]_  ]_](_urbrack.gif)       ![]_  ]_](_urbrack.gif)  
          ![]_  ]_](_urbrack.gif)      ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | csbnest1g 3140 | 
Nest the composition of two substitutions.  (Contributed by NM,
       23-May-2006.)  (Proof shortened by Mario Carneiro, 11-Nov-2016.)
 | 
                 ![]_  ]_](_urbrack.gif)       ![]_  ]_](_urbrack.gif)            ![]_  ]_](_urbrack.gif)      ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | csbidmg 3141* | 
Idempotent law for class substitutions.  (Contributed by NM,
       1-Mar-2008.)
 | 
                 ![]_  ]_](_urbrack.gif)       ![]_  ]_](_urbrack.gif)           ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | sbcco3g 3142* | 
Composition of two substitutions.  (Contributed by NM, 27-Nov-2005.)
       (Revised by Mario Carneiro, 11-Nov-2016.)
 | 
                            
              ![].  ].](_drbrack.gif)       ![].  ].](_drbrack.gif)  
         ![].  ].](_drbrack.gif)     | 
|   | 
| Theorem | csbco3g 3143* | 
Composition of two class substitutions.  (Contributed by NM,
       27-Nov-2005.)  (Revised by Mario Carneiro, 11-Nov-2016.)
 | 
                            
             ![]_  ]_](_urbrack.gif)       ![]_  ]_](_urbrack.gif)  
         ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | rspcsbela 3144* | 
Special case related to rspsbc 3072.  (Contributed by NM, 10-Dec-2005.)
       (Proof shortened by Eric Schmidt, 17-Jan-2007.)
 | 
                                  ![]_  ]_](_urbrack.gif)        | 
|   | 
| Theorem | sbnfc2 3145* | 
Two ways of expressing "  is (effectively) not free in  ."
       (Contributed by Mario Carneiro, 14-Oct-2016.)
 | 
               
    ![]_  ]_](_urbrack.gif)           ![]_  ]_](_urbrack.gif)    | 
|   | 
| Theorem | csbabg 3146* | 
Move substitution into a class abstraction.  (Contributed by NM,
       13-Dec-2005.)  (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 | 
                 ![]_  ]_](_urbrack.gif)                      ![].  ].](_drbrack.gif)     | 
|   | 
| Theorem | cbvralcsf 3147 | 
A more general version of cbvralf 2721 that doesn't require   and  
       to be distinct from   or  .  Changes
bound variables using
       implicit substitution.  (Contributed by Andrew Salmon, 13-Jul-2011.)
 | 
                                                      
                        
                               
             | 
|   | 
| Theorem | cbvrexcsf 3148 | 
A more general version of cbvrexf 2722 that has no distinct variable
       restrictions.  Changes bound variables using implicit substitution.
       (Contributed by Andrew Salmon, 13-Jul-2011.)  (Proof shortened by Mario
       Carneiro, 7-Dec-2014.)
 | 
                                                      
                        
                               
             | 
|   | 
| Theorem | cbvreucsf 3149 | 
A more general version of cbvreuv 2731 that has no distinct variable
       rextrictions.  Changes bound variables using implicit substitution.
       (Contributed by Andrew Salmon, 13-Jul-2011.)
 | 
                                                      
                        
                               
             | 
|   | 
| Theorem | cbvrabcsf 3150 | 
A more general version of cbvrab 2761 with no distinct variable
       restrictions.  (Contributed by Andrew Salmon, 13-Jul-2011.)
 | 
                                                      
                        
                                      
          | 
|   | 
| Theorem | cbvralv2 3151* | 
Rule used to change the bound variable in a restricted universal
       quantifier with implicit substitution which also changes the quantifier
       domain.  (Contributed by David Moews, 1-May-2017.)
 | 
                                
                                          | 
|   | 
| Theorem | cbvrexv2 3152* | 
Rule used to change the bound variable in a restricted existential
       quantifier with implicit substitution which also changes the quantifier
       domain.  (Contributed by David Moews, 1-May-2017.)
 | 
                                
                                          | 
|   | 
| Theorem | rspc2vd 3153* | 
Deduction version of 2-variable restricted specialization, using
       implicit substitution.  Notice that the class   for the second set
       variable   may
depend on the first set variable  .
       (Contributed by AV, 29-Mar-2021.)
 | 
                                                                                                                                                        | 
|   | 
| 2.1.11  Define basic set operations and
 relations
 | 
|   | 
| Syntax | cdif 3154 | 
Extend class notation to include class difference (read:  "  minus
      ").
 | 
    
      | 
|   | 
| Syntax | cun 3155 | 
Extend class notation to include union of two classes (read:  " 
     union  ").
 | 
    
      | 
|   | 
| Syntax | cin 3156 | 
Extend class notation to include the intersection of two classes (read:
      "  intersect
 ").
 | 
    
      | 
|   | 
| Syntax | wss 3157 | 
Extend wff notation to include the subclass relation.  This is
     read "  is a
subclass of   " or
"  includes  ".  When
       exists as a set,
it is also read " 
is a subset of  ".
 | 
     
   | 
|   | 
| Theorem | difjust 3158* | 
Soundness justification theorem for df-dif 3159.  (Contributed by Rodolfo
       Medina, 27-Apr-2010.)  (Proof shortened by Andrew Salmon,
       9-Jul-2011.)
 | 
                                                    | 
|   | 
| Definition | df-dif 3159* | 
Define class difference, also called relative complement.  Definition
       5.12 of [TakeutiZaring] p. 20. 
Contrast this operation with union
               (df-un 3161) and intersection         (df-in 3163).
       Several notations are used in the literature; we chose the  
       convention used in Definition 5.3 of [Eisenberg] p. 67 instead of the
       more common minus sign to reserve the latter for later use in, e.g.,
       arithmetic.  We will use the terminology "  excludes   " to
       mean      .  We will use "  is removed from   " to mean
              
i.e. the removal of an element or equivalently the
       exclusion of a singleton.  (Contributed by NM, 29-Apr-1994.)
 | 
           
                         | 
|   | 
| Theorem | unjust 3160* | 
Soundness justification theorem for df-un 3161.  (Contributed by Rodolfo
       Medina, 28-Apr-2010.)  (Proof shortened by Andrew Salmon,
       9-Jul-2011.)
 | 
                   
      
                
       | 
|   | 
| Definition | df-un 3161* | 
Define the union of two classes.  Definition 5.6 of [TakeutiZaring]
       p. 16.  Contrast this operation with difference        
       (df-dif 3159) and intersection         (df-in 3163).  (Contributed
       by NM, 23-Aug-1993.)
 | 
           
                
       | 
|   | 
| Theorem | injust 3162* | 
Soundness justification theorem for df-in 3163.  (Contributed by Rodolfo
       Medina, 28-Apr-2010.)  (Proof shortened by Andrew Salmon,
       9-Jul-2011.)
 | 
                   
      
                
       | 
|   | 
| Definition | df-in 3163* | 
Define the intersection of two classes.  Definition 5.6 of
       [TakeutiZaring] p. 16.  Contrast
this operation with union
               (df-un 3161) and difference         (df-dif 3159).
       (Contributed by NM, 29-Apr-1994.)
 | 
           
                
       | 
|   | 
| Theorem | dfin5 3164* | 
Alternate definition for the intersection of two classes.  (Contributed
       by NM, 6-Jul-2005.)
 | 
           
                 | 
|   | 
| Theorem | dfdif2 3165* | 
Alternate definition of class difference.  (Contributed by NM,
       25-Mar-2004.)
 | 
           
                   | 
|   | 
| Theorem | eldif 3166 | 
Expansion of membership in a class difference.  (Contributed by NM,
       29-Apr-1994.)
 | 
                                    | 
|   | 
| Theorem | eldifd 3167 | 
If a class is in one class and not another, it is also in their
       difference.  One-way deduction form of eldif 3166.  (Contributed by David
       Moews, 1-May-2017.)
 | 
                                                
       
       | 
|   | 
| Theorem | eldifad 3168 | 
If a class is in the difference of two classes, it is also in the
       minuend.  One-way deduction form of eldif 3166.  (Contributed by David
       Moews, 1-May-2017.)
 | 
                                        | 
|   | 
| Theorem | eldifbd 3169 | 
If a class is in the difference of two classes, it is not in the
       subtrahend.  One-way deduction form of eldif 3166.  (Contributed by David
       Moews, 1-May-2017.)
 | 
                                          | 
|   | 
| 2.1.12  Subclasses and subsets
 | 
|   | 
| Definition | df-ss 3170 | 
Define the subclass relationship.  Exercise 9 of [TakeutiZaring] p. 18.
     Note that       (proved in ssid 3203).  For a more traditional
     definition, but requiring a dummy variable, see dfss2 3172.  Other possible
     definitions are given by dfss3 3173, ssequn1 3333, ssequn2 3336, and sseqin2 3382.
     (Contributed by NM, 27-Apr-1994.)
 | 
                        | 
|   | 
| Theorem | dfss 3171 | 
Variant of subclass definition df-ss 3170.  (Contributed by NM,
     3-Sep-2004.)
 | 
                        | 
|   | 
| Theorem | dfss2 3172* | 
Alternate definition of the subclass relationship between two classes.
       Definition 5.9 of [TakeutiZaring]
p. 17.  (Contributed by NM,
       8-Jan-2002.)
 | 
                     
         | 
|   | 
| Theorem | dfss3 3173* | 
Alternate definition of subclass relationship.  (Contributed by NM,
       14-Oct-1999.)
 | 
                         | 
|   | 
| Theorem | dfss2f 3174 | 
Equivalence for subclass relation, using bound-variable hypotheses
       instead of distinct variable conditions.  (Contributed by NM,
       3-Jul-1994.)  (Revised by Andrew Salmon, 27-Aug-2011.)
 | 
                                                      | 
|   | 
| Theorem | dfss3f 3175 | 
Equivalence for subclass relation, using bound-variable hypotheses
       instead of distinct variable conditions.  (Contributed by NM,
       20-Mar-2004.)
 | 
                                             
    | 
|   | 
| Theorem | nfss 3176 | 
If   is not free in   and  , it is not free in      .
       (Contributed by NM, 27-Dec-1996.)
 | 
                                   | 
|   | 
| Theorem | ssel 3177 | 
Membership relationships follow from a subclass relationship.
       (Contributed by NM, 5-Aug-1993.)
 | 
                            | 
|   | 
| Theorem | ssel2 3178 | 
Membership relationships follow from a subclass relationship.
     (Contributed by NM, 7-Jun-2004.)
 | 
                            | 
|   | 
| Theorem | sseli 3179 | 
Membership inference from subclass relationship.  (Contributed by NM,
       5-Aug-1993.)
 | 
     
                           | 
|   | 
| Theorem | sselii 3180 | 
Membership inference from subclass relationship.  (Contributed by NM,
         31-May-1999.)
 | 
     
                               | 
|   | 
| Theorem | sselid 3181 | 
Membership inference from subclass relationship.  (Contributed by NM,
         25-Jun-2014.)
 | 
     
                                           | 
|   | 
| Theorem | sseld 3182 | 
Membership deduction from subclass relationship.  (Contributed by NM,
       15-Nov-1995.)
 | 
                               
             | 
|   | 
| Theorem | sselda 3183 | 
Membership deduction from subclass relationship.  (Contributed by NM,
       26-Jun-2014.)
 | 
                                            | 
|   | 
| Theorem | sseldd 3184 | 
Membership inference from subclass relationship.  (Contributed by NM,
         14-Dec-2004.)
 | 
                                                      | 
|   | 
| Theorem | ssneld 3185 | 
If a class is not in another class, it is also not in a subclass of that
       class.  Deduction form.  (Contributed by David Moews, 1-May-2017.)
 | 
                                                | 
|   | 
| Theorem | ssneldd 3186 | 
If an element is not in a class, it is also not in a subclass of that
       class.  Deduction form.  (Contributed by David Moews, 1-May-2017.)
 | 
                                                
          | 
|   | 
| Theorem | ssriv 3187* | 
Inference based on subclass definition.  (Contributed by NM,
       5-Aug-1993.)
 | 
                                | 
|   | 
| Theorem | ssrd 3188 | 
Deduction based on subclass definition.  (Contributed by Thierry Arnoux,
       8-Mar-2017.)
 | 
                                               
                         
        | 
|   | 
| Theorem | ssrdv 3189* | 
Deduction based on subclass definition.  (Contributed by NM,
       15-Nov-1995.)
 | 
           
                         
        | 
|   | 
| Theorem | sstr2 3190 | 
Transitivity of subclasses.  Exercise 5 of [TakeutiZaring] p. 17.
       (Contributed by NM, 5-Aug-1993.)  (Proof shortened by Andrew Salmon,
       14-Jun-2011.)
 | 
                       
     | 
|   | 
| Theorem | sstr 3191 | 
Transitivity of subclasses.  Theorem 6 of [Suppes] p. 23.  (Contributed by
     NM, 5-Sep-2003.)
 | 
                            | 
|   | 
| Theorem | sstri 3192 | 
Subclass transitivity inference.  (Contributed by NM, 5-May-2000.)
 | 
     
                               | 
|   | 
| Theorem | sstrd 3193 | 
Subclass transitivity deduction.  (Contributed by NM, 2-Jun-2004.)
 | 
                                                      | 
|   | 
| Theorem | sstrid 3194 | 
Subclass transitivity deduction.  (Contributed by NM, 6-Feb-2014.)
 | 
     
                                           | 
|   | 
| Theorem | sstrdi 3195 | 
Subclass transitivity deduction.  (Contributed by Jonathan Ben-Naim,
       3-Jun-2011.)
 | 
                                                | 
|   | 
| Theorem | sylan9ss 3196 | 
A subclass transitivity deduction.  (Contributed by NM, 27-Sep-2004.)
       (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 | 
                                                            | 
|   | 
| Theorem | sylan9ssr 3197 | 
A subclass transitivity deduction.  (Contributed by NM, 27-Sep-2004.)
 | 
                                                            | 
|   | 
| Theorem | eqss 3198 | 
The subclass relationship is antisymmetric.  Compare Theorem 4 of
       [Suppes] p. 22.  (Contributed by NM,
5-Aug-1993.)
 | 
               
             | 
|   | 
| Theorem | eqssi 3199 | 
Infer equality from two subclass relationships.  Compare Theorem 4 of
       [Suppes] p. 22.  (Contributed by NM,
9-Sep-1993.)
 | 
     
                               | 
|   | 
| Theorem | eqssd 3200 | 
Equality deduction from two subclass relationships.  Compare Theorem 4
       of [Suppes] p. 22.  (Contributed by NM,
27-Jun-2004.)
 | 
                                                      |