| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2eu4 | Unicode version | ||
| Description: This theorem provides us
with a definition of double existential
uniqueness ("exactly one |
| Ref | Expression |
|---|---|
| 2eu4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 |
. . . 4
| |
| 2 | 1 | eu3h 2099 |
. . 3
|
| 3 | ax-17 1549 |
. . . 4
| |
| 4 | 3 | eu3h 2099 |
. . 3
|
| 5 | 2, 4 | anbi12i 460 |
. 2
|
| 6 | an4 586 |
. 2
| |
| 7 | excom 1687 |
. . . . 5
| |
| 8 | 7 | anbi2i 457 |
. . . 4
|
| 9 | anidm 396 |
. . . 4
| |
| 10 | 8, 9 | bitri 184 |
. . 3
|
| 11 | hba1 1563 |
. . . . . . . . . 10
| |
| 12 | 11 | 19.3h 1576 |
. . . . . . . . 9
|
| 13 | 12 | anbi2i 457 |
. . . . . . . 8
|
| 14 | 19.26 1504 |
. . . . . . . 8
| |
| 15 | jcab 603 |
. . . . . . . . . . . 12
| |
| 16 | 15 | albii 1493 |
. . . . . . . . . . 11
|
| 17 | 19.26 1504 |
. . . . . . . . . . 11
| |
| 18 | 16, 17 | bitri 184 |
. . . . . . . . . 10
|
| 19 | 18 | albii 1493 |
. . . . . . . . 9
|
| 20 | 19.26 1504 |
. . . . . . . . 9
| |
| 21 | 19, 20 | bitri 184 |
. . . . . . . 8
|
| 22 | 13, 14, 21 | 3bitr4ri 213 |
. . . . . . 7
|
| 23 | 19.26 1504 |
. . . . . . . . 9
| |
| 24 | hba1 1563 |
. . . . . . . . . . 11
| |
| 25 | 24 | 19.3h 1576 |
. . . . . . . . . 10
|
| 26 | alcom 1501 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | anbi12i 460 |
. . . . . . . . 9
|
| 28 | 23, 27 | bitri 184 |
. . . . . . . 8
|
| 29 | 28 | albii 1493 |
. . . . . . 7
|
| 30 | 22, 29 | bitr4i 187 |
. . . . . 6
|
| 31 | 19.23v 1906 |
. . . . . . . 8
| |
| 32 | 19.23v 1906 |
. . . . . . . 8
| |
| 33 | 31, 32 | anbi12i 460 |
. . . . . . 7
|
| 34 | 33 | 2albii 1494 |
. . . . . 6
|
| 35 | hbe1 1518 |
. . . . . . . 8
| |
| 36 | ax-17 1549 |
. . . . . . . 8
| |
| 37 | 35, 36 | hbim 1568 |
. . . . . . 7
|
| 38 | hbe1 1518 |
. . . . . . . 8
| |
| 39 | ax-17 1549 |
. . . . . . . 8
| |
| 40 | 38, 39 | hbim 1568 |
. . . . . . 7
|
| 41 | 37, 40 | aaanh 1609 |
. . . . . 6
|
| 42 | 30, 34, 41 | 3bitri 206 |
. . . . 5
|
| 43 | 42 | 2exbii 1629 |
. . . 4
|
| 44 | eeanv 1960 |
. . . 4
| |
| 45 | 43, 44 | bitr2i 185 |
. . 3
|
| 46 | 10, 45 | anbi12i 460 |
. 2
|
| 47 | 5, 6, 46 | 3bitri 206 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |