| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2eu4 | Unicode version | ||
| Description: This theorem provides us
with a definition of double existential
       uniqueness ("exactly one  | 
| Ref | Expression | 
|---|---|
| 2eu4 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-17 1540 | 
. . . 4
 | |
| 2 | 1 | eu3h 2090 | 
. . 3
 | 
| 3 | ax-17 1540 | 
. . . 4
 | |
| 4 | 3 | eu3h 2090 | 
. . 3
 | 
| 5 | 2, 4 | anbi12i 460 | 
. 2
 | 
| 6 | an4 586 | 
. 2
 | |
| 7 | excom 1678 | 
. . . . 5
 | |
| 8 | 7 | anbi2i 457 | 
. . . 4
 | 
| 9 | anidm 396 | 
. . . 4
 | |
| 10 | 8, 9 | bitri 184 | 
. . 3
 | 
| 11 | hba1 1554 | 
. . . . . . . . . 10
 | |
| 12 | 11 | 19.3h 1567 | 
. . . . . . . . 9
 | 
| 13 | 12 | anbi2i 457 | 
. . . . . . . 8
 | 
| 14 | 19.26 1495 | 
. . . . . . . 8
 | |
| 15 | jcab 603 | 
. . . . . . . . . . . 12
 | |
| 16 | 15 | albii 1484 | 
. . . . . . . . . . 11
 | 
| 17 | 19.26 1495 | 
. . . . . . . . . . 11
 | |
| 18 | 16, 17 | bitri 184 | 
. . . . . . . . . 10
 | 
| 19 | 18 | albii 1484 | 
. . . . . . . . 9
 | 
| 20 | 19.26 1495 | 
. . . . . . . . 9
 | |
| 21 | 19, 20 | bitri 184 | 
. . . . . . . 8
 | 
| 22 | 13, 14, 21 | 3bitr4ri 213 | 
. . . . . . 7
 | 
| 23 | 19.26 1495 | 
. . . . . . . . 9
 | |
| 24 | hba1 1554 | 
. . . . . . . . . . 11
 | |
| 25 | 24 | 19.3h 1567 | 
. . . . . . . . . 10
 | 
| 26 | alcom 1492 | 
. . . . . . . . . 10
 | |
| 27 | 25, 26 | anbi12i 460 | 
. . . . . . . . 9
 | 
| 28 | 23, 27 | bitri 184 | 
. . . . . . . 8
 | 
| 29 | 28 | albii 1484 | 
. . . . . . 7
 | 
| 30 | 22, 29 | bitr4i 187 | 
. . . . . 6
 | 
| 31 | 19.23v 1897 | 
. . . . . . . 8
 | |
| 32 | 19.23v 1897 | 
. . . . . . . 8
 | |
| 33 | 31, 32 | anbi12i 460 | 
. . . . . . 7
 | 
| 34 | 33 | 2albii 1485 | 
. . . . . 6
 | 
| 35 | hbe1 1509 | 
. . . . . . . 8
 | |
| 36 | ax-17 1540 | 
. . . . . . . 8
 | |
| 37 | 35, 36 | hbim 1559 | 
. . . . . . 7
 | 
| 38 | hbe1 1509 | 
. . . . . . . 8
 | |
| 39 | ax-17 1540 | 
. . . . . . . 8
 | |
| 40 | 38, 39 | hbim 1559 | 
. . . . . . 7
 | 
| 41 | 37, 40 | aaanh 1600 | 
. . . . . 6
 | 
| 42 | 30, 34, 41 | 3bitri 206 | 
. . . . 5
 | 
| 43 | 42 | 2exbii 1620 | 
. . . 4
 | 
| 44 | eeanv 1951 | 
. . . 4
 | |
| 45 | 43, 44 | bitr2i 185 | 
. . 3
 | 
| 46 | 10, 45 | anbi12i 460 | 
. 2
 | 
| 47 | 5, 6, 46 | 3bitri 206 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |