ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfimd Unicode version

Theorem nfimd 1585
Description: If in a context  x is not free in  ps and  ch, then it is not free in  ( ps  ->  ch ). (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.)
Hypotheses
Ref Expression
nfimd.1  |-  ( ph  ->  F/ x ps )
nfimd.2  |-  ( ph  ->  F/ x ch )
Assertion
Ref Expression
nfimd  |-  ( ph  ->  F/ x ( ps 
->  ch ) )

Proof of Theorem nfimd
StepHypRef Expression
1 nfimd.1 . 2  |-  ( ph  ->  F/ x ps )
2 nfimd.2 . 2  |-  ( ph  ->  F/ x ch )
3 nfnf1 1544 . . . . 5  |-  F/ x F/ x ps
43nfri 1519 . . . 4  |-  ( F/ x ps  ->  A. x F/ x ps )
5 nfnf1 1544 . . . . 5  |-  F/ x F/ x ch
65nfri 1519 . . . 4  |-  ( F/ x ch  ->  A. x F/ x ch )
7 nfr 1518 . . . . . 6  |-  ( F/ x ch  ->  ( ch  ->  A. x ch )
)
87imim2d 54 . . . . 5  |-  ( F/ x ch  ->  (
( ps  ->  ch )  ->  ( ps  ->  A. x ch ) ) )
9 19.21t 1582 . . . . . 6  |-  ( F/ x ps  ->  ( A. x ( ps  ->  ch )  <->  ( ps  ->  A. x ch ) ) )
109biimprd 158 . . . . 5  |-  ( F/ x ps  ->  (
( ps  ->  A. x ch )  ->  A. x
( ps  ->  ch ) ) )
118, 10syl9r 73 . . . 4  |-  ( F/ x ps  ->  ( F/ x ch  ->  (
( ps  ->  ch )  ->  A. x ( ps 
->  ch ) ) ) )
124, 6, 11alrimdh 1479 . . 3  |-  ( F/ x ps  ->  ( F/ x ch  ->  A. x
( ( ps  ->  ch )  ->  A. x
( ps  ->  ch ) ) ) )
13 df-nf 1461 . . 3  |-  ( F/ x ( ps  ->  ch )  <->  A. x ( ( ps  ->  ch )  ->  A. x ( ps 
->  ch ) ) )
1412, 13imbitrrdi 162 . 2  |-  ( F/ x ps  ->  ( F/ x ch  ->  F/ x ( ps  ->  ch ) ) )
151, 2, 14sylc 62 1  |-  ( ph  ->  F/ x ( ps 
->  ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351   F/wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-4 1510  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  nfbid  1588  dvelimALT  2010  dvelimfv  2011  dvelimor  2018  nfmod  2043  nfraldw  2509  nfraldxy  2510  nfixpxy  6719  cbvrald  14579
  Copyright terms: Public domain W3C validator