Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > albidh | Unicode version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
albidh.1 | |
albidh.2 |
Ref | Expression |
---|---|
albidh |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albidh.1 | . . 3 | |
2 | albidh.2 | . . 3 | |
3 | 1, 2 | alrimih 1457 | . 2 |
4 | albi 1456 | . 2 | |
5 | 3, 4 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nfbidf 1527 albid 1603 dral2 1719 ax11v2 1808 albidv 1812 equs5or 1818 sbal2 2008 eubidh 2020 |
Copyright terms: Public domain | W3C validator |