ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equs5or Unicode version

Theorem equs5or 1818
Description: Lemma used in proofs of substitution properties. Like equs5 1817 but, in intuitionistic logic, replacing negation and implication with disjunction makes this a stronger result. (Contributed by Jim Kingdon, 2-Feb-2018.)
Assertion
Ref Expression
equs5or  |-  ( A. x  x  =  y  \/  ( E. x ( x  =  y  /\  ph )  ->  A. x
( x  =  y  ->  ph ) ) )

Proof of Theorem equs5or
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 a9e 1684 . 2  |-  E. z 
z  =  y
2 dveeq2or 1804 . . . . . 6  |-  ( A. x  x  =  y  \/  F/ x  z  =  y )
3 nfnf1 1532 . . . . . . . . . . 11  |-  F/ x F/ x  z  =  y
43nfri 1507 . . . . . . . . . 10  |-  ( F/ x  z  =  y  ->  A. x F/ x  z  =  y )
5 ax11v 1815 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( ph  ->  A. x ( x  =  z  ->  ph )
) )
6 equequ2 1701 . . . . . . . . . . . . . . 15  |-  ( z  =  y  ->  (
x  =  z  <->  x  =  y ) )
76adantl 275 . . . . . . . . . . . . . 14  |-  ( ( F/ x  z  =  y  /\  z  =  y )  ->  (
x  =  z  <->  x  =  y ) )
8 nfr 1506 . . . . . . . . . . . . . . . . 17  |-  ( F/ x  z  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
98imp 123 . . . . . . . . . . . . . . . 16  |-  ( ( F/ x  z  =  y  /\  z  =  y )  ->  A. x  z  =  y )
10 hba1 1528 . . . . . . . . . . . . . . . . 17  |-  ( A. x  z  =  y  ->  A. x A. x  z  =  y )
116imbi1d 230 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  (
( x  =  z  ->  ph )  <->  ( x  =  y  ->  ph )
) )
1211sps 1525 . . . . . . . . . . . . . . . . 17  |-  ( A. x  z  =  y  ->  ( ( x  =  z  ->  ph )  <->  ( x  =  y  ->  ph )
) )
1310, 12albidh 1468 . . . . . . . . . . . . . . . 16  |-  ( A. x  z  =  y  ->  ( A. x ( x  =  z  ->  ph )  <->  A. x ( x  =  y  ->  ph )
) )
149, 13syl 14 . . . . . . . . . . . . . . 15  |-  ( ( F/ x  z  =  y  /\  z  =  y )  ->  ( A. x ( x  =  z  ->  ph )  <->  A. x
( x  =  y  ->  ph ) ) )
1514imbi2d 229 . . . . . . . . . . . . . 14  |-  ( ( F/ x  z  =  y  /\  z  =  y )  ->  (
( ph  ->  A. x
( x  =  z  ->  ph ) )  <->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) )
167, 15imbi12d 233 . . . . . . . . . . . . 13  |-  ( ( F/ x  z  =  y  /\  z  =  y )  ->  (
( x  =  z  ->  ( ph  ->  A. x ( x  =  z  ->  ph ) ) )  <->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) ) )
175, 16mpbii 147 . . . . . . . . . . . 12  |-  ( ( F/ x  z  =  y  /\  z  =  y )  ->  (
x  =  y  -> 
( ph  ->  A. x
( x  =  y  ->  ph ) ) ) )
1817ex 114 . . . . . . . . . . 11  |-  ( F/ x  z  =  y  ->  ( z  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph )
) ) ) )
1918imp4a 347 . . . . . . . . . 10  |-  ( F/ x  z  =  y  ->  ( z  =  y  ->  ( (
x  =  y  /\  ph )  ->  A. x
( x  =  y  ->  ph ) ) ) )
204, 19alrimih 1457 . . . . . . . . 9  |-  ( F/ x  z  =  y  ->  A. x ( z  =  y  ->  (
( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph ) ) ) )
21 19.21t 1570 . . . . . . . . 9  |-  ( F/ x  z  =  y  ->  ( A. x
( z  =  y  ->  ( ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) )  <->  ( z  =  y  ->  A. x
( ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) ) ) )
2220, 21mpbid 146 . . . . . . . 8  |-  ( F/ x  z  =  y  ->  ( z  =  y  ->  A. x
( ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) ) )
23 hba1 1528 . . . . . . . . 9  |-  ( A. x ( x  =  y  ->  ph )  ->  A. x A. x ( x  =  y  ->  ph ) )
242319.23h 1486 . . . . . . . 8  |-  ( A. x ( ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
)  <->  ( E. x
( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph ) ) )
2522, 24syl6ib 160 . . . . . . 7  |-  ( F/ x  z  =  y  ->  ( z  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) ) )
2625orim2i 751 . . . . . 6  |-  ( ( A. x  x  =  y  \/  F/ x  z  =  y )  ->  ( A. x  x  =  y  \/  (
z  =  y  -> 
( E. x ( x  =  y  /\  ph )  ->  A. x
( x  =  y  ->  ph ) ) ) ) )
272, 26ax-mp 5 . . . . 5  |-  ( A. x  x  =  y  \/  ( z  =  y  ->  ( E. x
( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph ) ) ) )
28 pm2.76 798 . . . . 5  |-  ( ( A. x  x  =  y  \/  ( z  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) ) )  -> 
( ( A. x  x  =  y  \/  z  =  y )  ->  ( A. x  x  =  y  \/  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) ) ) )
2927, 28ax-mp 5 . . . 4  |-  ( ( A. x  x  =  y  \/  z  =  y )  ->  ( A. x  x  =  y  \/  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) ) )
3029olcs 726 . . 3  |-  ( z  =  y  ->  ( A. x  x  =  y  \/  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) ) )
3130exlimiv 1586 . 2  |-  ( E. z  z  =  y  ->  ( A. x  x  =  y  \/  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
) ) )
321, 31ax-mp 5 1  |-  ( A. x  x  =  y  \/  ( E. x ( x  =  y  /\  ph )  ->  A. x
( x  =  y  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698   A.wal 1341   F/wnf 1448   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sb4or  1821
  Copyright terms: Public domain W3C validator