ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbal2 Unicode version

Theorem sbal2 1946
Description: Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
sbal2  |-  ( -. 
A. x  x  =  y  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Distinct variable groups:    y, z    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbal2
StepHypRef Expression
1 alcom 1412 . . 3  |-  ( A. y A. x ( y  =  z  ->  ph )  <->  A. x A. y ( y  =  z  ->  ph ) )
2 hbnae 1656 . . . 4  |-  ( -. 
A. x  x  =  y  ->  A. y  -.  A. x  x  =  y )
3 dveeq1 1943 . . . . . . 7  |-  ( -. 
A. x  x  =  y  ->  ( y  =  z  ->  A. x  y  =  z )
)
43alimi 1389 . . . . . 6  |-  ( A. x  -.  A. x  x  =  y  ->  A. x
( y  =  z  ->  A. x  y  =  z ) )
54hbnaes 1658 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  A. x
( y  =  z  ->  A. x  y  =  z ) )
6 19.21ht 1518 . . . . 5  |-  ( A. x ( y  =  z  ->  A. x  y  =  z )  ->  ( A. x ( y  =  z  ->  ph )  <->  ( y  =  z  ->  A. x ph ) ) )
75, 6syl 14 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( A. x ( y  =  z  ->  ph )  <->  ( y  =  z  ->  A. x ph ) ) )
82, 7albidh 1414 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( A. y A. x ( y  =  z  ->  ph )  <->  A. y ( y  =  z  ->  A. x ph ) ) )
91, 8syl5rbbr 193 . 2  |-  ( -. 
A. x  x  =  y  ->  ( A. y ( y  =  z  ->  A. x ph )  <->  A. x A. y
( y  =  z  ->  ph ) ) )
10 sb6 1814 . 2  |-  ( [ z  /  y ] A. x ph  <->  A. y
( y  =  z  ->  A. x ph )
)
11 sb6 1814 . . 3  |-  ( [ z  /  y ]
ph 
<-> 
A. y ( y  =  z  ->  ph )
)
1211albii 1404 . 2  |-  ( A. x [ z  /  y ] ph  <->  A. x A. y
( y  =  z  ->  ph ) )
139, 10, 123bitr4g 221 1  |-  ( -. 
A. x  x  =  y  ->  ( [
z  /  y ] A. x ph  <->  A. x [ z  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 103   A.wal 1287   [wsb 1692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator