ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an6 Unicode version

Theorem an6 1257
Description: Rearrangement of 6 conjuncts. (Contributed by NM, 13-Mar-1995.)
Assertion
Ref Expression
an6  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  ( th  /\  ta  /\  et ) )  <->  ( ( ph  /\  th )  /\  ( ps  /\  ta )  /\  ( ch  /\  et ) ) )

Proof of Theorem an6
StepHypRef Expression
1 df-3an 926 . . . 4  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
2 df-3an 926 . . . 4  |-  ( ( th  /\  ta  /\  et )  <->  ( ( th 
/\  ta )  /\  et ) )
31, 2anbi12i 448 . . 3  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  ( th  /\  ta  /\  et ) )  <->  ( (
( ph  /\  ps )  /\  ch )  /\  (
( th  /\  ta )  /\  et ) ) )
4 an4 553 . . 3  |-  ( ( ( ( ph  /\  ps )  /\  ch )  /\  ( ( th  /\  ta )  /\  et ) )  <->  ( ( (
ph  /\  ps )  /\  ( th  /\  ta ) )  /\  ( ch  /\  et ) ) )
5 an4 553 . . . 4  |-  ( ( ( ph  /\  ps )  /\  ( th  /\  ta ) )  <->  ( ( ph  /\  th )  /\  ( ps  /\  ta )
) )
65anbi1i 446 . . 3  |-  ( ( ( ( ph  /\  ps )  /\  ( th  /\  ta ) )  /\  ( ch  /\  et ) )  <->  ( (
( ph  /\  th )  /\  ( ps  /\  ta ) )  /\  ( ch  /\  et ) ) )
73, 4, 63bitri 204 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  ( th  /\  ta  /\  et ) )  <->  ( (
( ph  /\  th )  /\  ( ps  /\  ta ) )  /\  ( ch  /\  et ) ) )
8 df-3an 926 . 2  |-  ( ( ( ph  /\  th )  /\  ( ps  /\  ta )  /\  ( ch  /\  et ) )  <-> 
( ( ( ph  /\ 
th )  /\  ( ps  /\  ta ) )  /\  ( ch  /\  et ) ) )
97, 8bitr4i 185 1  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  ( th  /\  ta  /\  et ) )  <->  ( ( ph  /\  th )  /\  ( ps  /\  ta )  /\  ( ch  /\  et ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    /\ w3a 924
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 926
This theorem is referenced by:  3an6  1258  elfzuzb  9403
  Copyright terms: Public domain W3C validator