| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzuzb | Unicode version | ||
| Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuzb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 982 |
. . 3
| |
| 2 | an6 1332 |
. . 3
| |
| 3 | df-3an 982 |
. . . . 5
| |
| 4 | anandir 591 |
. . . . 5
| |
| 5 | ancom 266 |
. . . . . 6
| |
| 6 | 5 | anbi2i 457 |
. . . . 5
|
| 7 | 3, 4, 6 | 3bitri 206 |
. . . 4
|
| 8 | 7 | anbi1i 458 |
. . 3
|
| 9 | 1, 2, 8 | 3bitr4ri 213 |
. 2
|
| 10 | elfz2 10107 |
. 2
| |
| 11 | eluz2 9624 |
. . 3
| |
| 12 | eluz2 9624 |
. . 3
| |
| 13 | 11, 12 | anbi12i 460 |
. 2
|
| 14 | 9, 10, 13 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-neg 8217 df-z 9344 df-uz 9619 df-fz 10101 |
| This theorem is referenced by: eluzfz 10112 elfzuz 10113 elfzuz3 10114 elfzuz2 10121 peano2fzr 10129 fzsplit2 10142 fzass4 10154 fzss1 10155 fzss2 10156 fzp1elp1 10167 fznn 10181 elfz2nn0 10204 elfzofz 10255 fzosplitsnm1 10302 fzofzp1b 10321 fzosplitsn 10326 seq3fveq2 10584 seqfveq2g 10586 monoord 10594 seq3id2 10635 bcn1 10867 seq3coll 10951 summodclem2a 11563 fisum0diag2 11629 mertenslemi1 11717 prodmodclem2a 11758 |
| Copyright terms: Public domain | W3C validator |