ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuzb Unicode version

Theorem elfzuzb 9807
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuzb  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )

Proof of Theorem elfzuzb
StepHypRef Expression
1 df-3an 964 . . 3  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( (
( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( M  <_  K  /\  K  <_  N ) ) )
2 an6 1299 . . 3  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) )  <-> 
( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
3 df-3an 964 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) )
4 anandir 580 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) 
<->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( N  e.  ZZ  /\  K  e.  ZZ ) ) )
5 ancom 264 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  <->  ( K  e.  ZZ  /\  N  e.  ZZ )
)
65anbi2i 452 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( N  e.  ZZ  /\  K  e.  ZZ ) )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) ) )
73, 4, 63bitri 205 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) ) )
87anbi1i 453 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( M  <_  K  /\  K  <_  N ) ) )
91, 2, 83bitr4ri 212 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) ) )
10 elfz2 9804 . 2  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
11 eluz2 9339 . . 3  |-  ( K  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K ) )
12 eluz2 9339 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) )
1311, 12anbi12i 455 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) ) )
149, 10, 133bitr4i 211 1  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 962    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774    <_ cle 7808   ZZcz 9061   ZZ>=cuz 9333   ...cfz 9797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-setind 4452  ax-cnex 7718  ax-resscn 7719
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-neg 7943  df-z 9062  df-uz 9334  df-fz 9798
This theorem is referenced by:  eluzfz  9808  elfzuz  9809  elfzuz3  9810  elfzuz2  9816  peano2fzr  9824  fzsplit2  9837  fzass4  9849  fzss1  9850  fzss2  9851  fzp1elp1  9862  fznn  9876  elfz2nn0  9899  elfzofz  9946  fzosplitsnm1  9993  fzofzp1b  10012  fzosplitsn  10017  seq3fveq2  10249  monoord  10256  seq3id2  10289  bcn1  10511  seq3coll  10592  summodclem2a  11157  fisum0diag2  11223  mertenslemi1  11311  prodmodclem2a  11352
  Copyright terms: Public domain W3C validator