| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzuzb | Unicode version | ||
| Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| elfzuzb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1004 |
. . 3
| |
| 2 | an6 1355 |
. . 3
| |
| 3 | df-3an 1004 |
. . . . 5
| |
| 4 | anandir 593 |
. . . . 5
| |
| 5 | ancom 266 |
. . . . . 6
| |
| 6 | 5 | anbi2i 457 |
. . . . 5
|
| 7 | 3, 4, 6 | 3bitri 206 |
. . . 4
|
| 8 | 7 | anbi1i 458 |
. . 3
|
| 9 | 1, 2, 8 | 3bitr4ri 213 |
. 2
|
| 10 | elfz2 10211 |
. 2
| |
| 11 | eluz2 9728 |
. . 3
| |
| 12 | eluz2 9728 |
. . 3
| |
| 13 | 11, 12 | anbi12i 460 |
. 2
|
| 14 | 9, 10, 13 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-neg 8320 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: eluzfz 10216 elfzuz 10217 elfzuz3 10218 elfzuz2 10225 peano2fzr 10233 fzsplit2 10246 fzass4 10258 fzss1 10259 fzss2 10260 fzp1elp1 10271 fznn 10285 elfz2nn0 10308 elfzofz 10359 fzosplitsnm1 10415 fzofzp1b 10434 fzosplitsn 10439 seq3fveq2 10697 seqfveq2g 10699 monoord 10707 seq3id2 10748 bcn1 10980 seq3coll 11064 ccatrn 11144 swrds1 11200 swrdccat2 11203 summodclem2a 11892 fisum0diag2 11958 mertenslemi1 12046 prodmodclem2a 12087 |
| Copyright terms: Public domain | W3C validator |