Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzuzb | Unicode version |
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuzb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 975 | . . 3 | |
2 | an6 1316 | . . 3 | |
3 | df-3an 975 | . . . . 5 | |
4 | anandir 586 | . . . . 5 | |
5 | ancom 264 | . . . . . 6 | |
6 | 5 | anbi2i 454 | . . . . 5 |
7 | 3, 4, 6 | 3bitri 205 | . . . 4 |
8 | 7 | anbi1i 455 | . . 3 |
9 | 1, 2, 8 | 3bitr4ri 212 | . 2 |
10 | elfz2 9972 | . 2 | |
11 | eluz2 9493 | . . 3 | |
12 | eluz2 9493 | . . 3 | |
13 | 11, 12 | anbi12i 457 | . 2 |
14 | 9, 10, 13 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 973 wcel 2141 class class class wbr 3989 cfv 5198 (class class class)co 5853 cle 7955 cz 9212 cuz 9487 cfz 9965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-neg 8093 df-z 9213 df-uz 9488 df-fz 9966 |
This theorem is referenced by: eluzfz 9976 elfzuz 9977 elfzuz3 9978 elfzuz2 9985 peano2fzr 9993 fzsplit2 10006 fzass4 10018 fzss1 10019 fzss2 10020 fzp1elp1 10031 fznn 10045 elfz2nn0 10068 elfzofz 10118 fzosplitsnm1 10165 fzofzp1b 10184 fzosplitsn 10189 seq3fveq2 10425 monoord 10432 seq3id2 10465 bcn1 10692 seq3coll 10777 summodclem2a 11344 fisum0diag2 11410 mertenslemi1 11498 prodmodclem2a 11539 |
Copyright terms: Public domain | W3C validator |