ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuzb Unicode version

Theorem elfzuzb 10037
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuzb  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )

Proof of Theorem elfzuzb
StepHypRef Expression
1 df-3an 982 . . 3  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( (
( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( M  <_  K  /\  K  <_  N ) ) )
2 an6 1332 . . 3  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) )  <-> 
( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
3 df-3an 982 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) )
4 anandir 591 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) 
<->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( N  e.  ZZ  /\  K  e.  ZZ ) ) )
5 ancom 266 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  <->  ( K  e.  ZZ  /\  N  e.  ZZ )
)
65anbi2i 457 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( N  e.  ZZ  /\  K  e.  ZZ ) )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) ) )
73, 4, 63bitri 206 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) ) )
87anbi1i 458 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( M  <_  K  /\  K  <_  N ) ) )
91, 2, 83bitr4ri 213 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) ) )
10 elfz2 10033 . 2  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
11 eluz2 9552 . . 3  |-  ( K  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K ) )
12 eluz2 9552 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) )
1311, 12anbi12i 460 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) ) )
149, 10, 133bitr4i 212 1  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2160   class class class wbr 4018   ` cfv 5231  (class class class)co 5891    <_ cle 8011   ZZcz 9271   ZZ>=cuz 9546   ...cfz 10026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-setind 4551  ax-cnex 7920  ax-resscn 7921
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-neg 8149  df-z 9272  df-uz 9547  df-fz 10027
This theorem is referenced by:  eluzfz  10038  elfzuz  10039  elfzuz3  10040  elfzuz2  10047  peano2fzr  10055  fzsplit2  10068  fzass4  10080  fzss1  10081  fzss2  10082  fzp1elp1  10093  fznn  10107  elfz2nn0  10130  elfzofz  10180  fzosplitsnm1  10227  fzofzp1b  10246  fzosplitsn  10251  seq3fveq2  10487  monoord  10494  seq3id2  10527  bcn1  10756  seq3coll  10840  summodclem2a  11407  fisum0diag2  11473  mertenslemi1  11561  prodmodclem2a  11602
  Copyright terms: Public domain W3C validator