Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzuzb | Unicode version |
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuzb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 970 | . . 3 | |
2 | an6 1311 | . . 3 | |
3 | df-3an 970 | . . . . 5 | |
4 | anandir 581 | . . . . 5 | |
5 | ancom 264 | . . . . . 6 | |
6 | 5 | anbi2i 453 | . . . . 5 |
7 | 3, 4, 6 | 3bitri 205 | . . . 4 |
8 | 7 | anbi1i 454 | . . 3 |
9 | 1, 2, 8 | 3bitr4ri 212 | . 2 |
10 | elfz2 9951 | . 2 | |
11 | eluz2 9472 | . . 3 | |
12 | eluz2 9472 | . . 3 | |
13 | 11, 12 | anbi12i 456 | . 2 |
14 | 9, 10, 13 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 968 wcel 2136 class class class wbr 3982 cfv 5188 (class class class)co 5842 cle 7934 cz 9191 cuz 9466 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-neg 8072 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: eluzfz 9955 elfzuz 9956 elfzuz3 9957 elfzuz2 9964 peano2fzr 9972 fzsplit2 9985 fzass4 9997 fzss1 9998 fzss2 9999 fzp1elp1 10010 fznn 10024 elfz2nn0 10047 elfzofz 10097 fzosplitsnm1 10144 fzofzp1b 10163 fzosplitsn 10168 seq3fveq2 10404 monoord 10411 seq3id2 10444 bcn1 10671 seq3coll 10755 summodclem2a 11322 fisum0diag2 11388 mertenslemi1 11476 prodmodclem2a 11517 |
Copyright terms: Public domain | W3C validator |