| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elfzuzb | Unicode version | ||
| Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| elfzuzb | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3an 982 | 
. . 3
 | |
| 2 | an6 1332 | 
. . 3
 | |
| 3 | df-3an 982 | 
. . . . 5
 | |
| 4 | anandir 591 | 
. . . . 5
 | |
| 5 | ancom 266 | 
. . . . . 6
 | |
| 6 | 5 | anbi2i 457 | 
. . . . 5
 | 
| 7 | 3, 4, 6 | 3bitri 206 | 
. . . 4
 | 
| 8 | 7 | anbi1i 458 | 
. . 3
 | 
| 9 | 1, 2, 8 | 3bitr4ri 213 | 
. 2
 | 
| 10 | elfz2 10090 | 
. 2
 | |
| 11 | eluz2 9607 | 
. . 3
 | |
| 12 | eluz2 9607 | 
. . 3
 | |
| 13 | 11, 12 | anbi12i 460 | 
. 2
 | 
| 14 | 9, 10, 13 | 3bitr4i 212 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-neg 8200 df-z 9327 df-uz 9602 df-fz 10084 | 
| This theorem is referenced by: eluzfz 10095 elfzuz 10096 elfzuz3 10097 elfzuz2 10104 peano2fzr 10112 fzsplit2 10125 fzass4 10137 fzss1 10138 fzss2 10139 fzp1elp1 10150 fznn 10164 elfz2nn0 10187 elfzofz 10238 fzosplitsnm1 10285 fzofzp1b 10304 fzosplitsn 10309 seq3fveq2 10567 seqfveq2g 10569 monoord 10577 seq3id2 10618 bcn1 10850 seq3coll 10934 summodclem2a 11546 fisum0diag2 11612 mertenslemi1 11700 prodmodclem2a 11741 | 
| Copyright terms: Public domain | W3C validator |