ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an4 Unicode version

Theorem an4 586
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
an4  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  th )
) )

Proof of Theorem an4
StepHypRef Expression
1 an12 561 . . 3  |-  ( ( ps  /\  ( ch 
/\  th ) )  <->  ( ch  /\  ( ps  /\  th ) ) )
21anbi2i 457 . 2  |-  ( (
ph  /\  ( ps  /\  ( ch  /\  th ) ) )  <->  ( ph  /\  ( ch  /\  ( ps  /\  th ) ) ) )
3 anass 401 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ph  /\  ( ps  /\  ( ch  /\  th ) ) ) )
4 anass 401 . 2  |-  ( ( ( ph  /\  ch )  /\  ( ps  /\  th ) )  <->  ( ph  /\  ( ch  /\  ( ps  /\  th ) ) ) )
52, 3, 43bitr4i 212 1  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  th )
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  an42  587  an4s  588  anandi  590  anandir  591  rnlem  979  an6  1334  2eu4  2149  reean  2677  reu2  2968  rmo4  2973  rmo3f  2977  rmo3  3098  inxp  4830  xp11m  5140  fununi  5361  fun  5469  resoprab2  6065  xporderlem  6340  poxp  6341  th3qlem1  6747  enq0enq  7579  enq0tr  7582  genpdisj  7671  cju  9069  elfzo2  10307  iooinsup  11703  summodc  11809  prodmodc  12004  issubmd  13421  dvdsrtr  13978  domnmuln0  14150  txbasval  14854  txcnp  14858  txlm  14866
  Copyright terms: Public domain W3C validator