ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an4 Unicode version

Theorem an4 586
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
an4  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  th )
) )

Proof of Theorem an4
StepHypRef Expression
1 an12 561 . . 3  |-  ( ( ps  /\  ( ch 
/\  th ) )  <->  ( ch  /\  ( ps  /\  th ) ) )
21anbi2i 457 . 2  |-  ( (
ph  /\  ( ps  /\  ( ch  /\  th ) ) )  <->  ( ph  /\  ( ch  /\  ( ps  /\  th ) ) ) )
3 anass 401 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ph  /\  ( ps  /\  ( ch  /\  th ) ) ) )
4 anass 401 . 2  |-  ( ( ( ph  /\  ch )  /\  ( ps  /\  th ) )  <->  ( ph  /\  ( ch  /\  ( ps  /\  th ) ) ) )
52, 3, 43bitr4i 212 1  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  th )
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  an42  587  an4s  588  anandi  590  anandir  591  rnlem  978  an6  1332  2eu4  2135  reean  2663  reu2  2949  rmo4  2954  rmo3f  2958  rmo3  3078  inxp  4797  xp11m  5105  fununi  5323  fun  5427  resoprab2  6016  xporderlem  6286  poxp  6287  th3qlem1  6693  enq0enq  7493  enq0tr  7496  genpdisj  7585  cju  8982  elfzo2  10219  iooinsup  11423  summodc  11529  prodmodc  11724  issubmd  13049  dvdsrtr  13600  domnmuln0  13772  txbasval  14446  txcnp  14450  txlm  14458
  Copyright terms: Public domain W3C validator