ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  an4 Unicode version

Theorem an4 581
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
an4  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  th )
) )

Proof of Theorem an4
StepHypRef Expression
1 an12 556 . . 3  |-  ( ( ps  /\  ( ch 
/\  th ) )  <->  ( ch  /\  ( ps  /\  th ) ) )
21anbi2i 454 . 2  |-  ( (
ph  /\  ( ps  /\  ( ch  /\  th ) ) )  <->  ( ph  /\  ( ch  /\  ( ps  /\  th ) ) ) )
3 anass 399 . 2  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ph  /\  ( ps  /\  ( ch  /\  th ) ) ) )
4 anass 399 . 2  |-  ( ( ( ph  /\  ch )  /\  ( ps  /\  th ) )  <->  ( ph  /\  ( ch  /\  ( ps  /\  th ) ) ) )
52, 3, 43bitr4i 211 1  |-  ( ( ( ph  /\  ps )  /\  ( ch  /\  th ) )  <->  ( ( ph  /\  ch )  /\  ( ps  /\  th )
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  an42  582  an4s  583  anandi  585  anandir  586  rnlem  971  an6  1316  2eu4  2112  reean  2638  reu2  2918  rmo4  2923  rmo3f  2927  rmo3  3046  inxp  4745  xp11m  5049  fununi  5266  fun  5370  resoprab2  5950  xporderlem  6210  poxp  6211  th3qlem1  6615  enq0enq  7393  enq0tr  7396  genpdisj  7485  cju  8877  elfzo2  10106  iooinsup  11240  summodc  11346  prodmodc  11541  issubmd  12696  txbasval  13061  txcnp  13065  txlm  13073
  Copyright terms: Public domain W3C validator