ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modprmn0modprm0 Unicode version

Theorem modprmn0modprm0 12745
Description: For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.)
Assertion
Ref Expression
modprmn0modprm0  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
I  e.  ( 0..^ P )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
Distinct variable groups:    j, I    j, N    P, j

Proof of Theorem modprmn0modprm0
StepHypRef Expression
1 simpl1 1005 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  P  e.  Prime )
2 prmnn 12598 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
3 zmodfzo 10536 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  P  e.  NN )  ->  ( N  mod  P
)  e.  ( 0..^ P ) )
42, 3sylan2 286 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  P  e.  Prime )  -> 
( N  mod  P
)  e.  ( 0..^ P ) )
54ancoms 268 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( N  mod  P )  e.  ( 0..^ P ) )
653adant3 1022 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  ( N  mod  P )  e.  ( 0..^ P ) )
7 fzo1fzo0n0 10351 . . . . . . . 8  |-  ( ( N  mod  P )  e.  ( 1..^ P )  <->  ( ( N  mod  P )  e.  ( 0..^ P )  /\  ( N  mod  P )  =/=  0 ) )
87simplbi2com 1467 . . . . . . 7  |-  ( ( N  mod  P )  =/=  0  ->  (
( N  mod  P
)  e.  ( 0..^ P )  ->  ( N  mod  P )  e.  ( 1..^ P ) ) )
983ad2ant3 1025 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
( N  mod  P
)  e.  ( 0..^ P )  ->  ( N  mod  P )  e.  ( 1..^ P ) ) )
106, 9mpd 13 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  ( N  mod  P )  e.  ( 1..^ P ) )
1110adantr 276 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( N  mod  P
)  e.  ( 1..^ P ) )
12 simpr 110 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  I  e.  ( 0..^ P ) )
13 nnnn0modprm0 12744 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  mod  P )  e.  ( 1..^ P )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod  P )  =  0 )
141, 11, 12, 13syl3anc 1252 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod  P )  =  0 )
15 elfzoelz 10311 . . . . . . . . . 10  |-  ( j  e.  ( 0..^ P )  ->  j  e.  ZZ )
1615zcnd 9538 . . . . . . . . 9  |-  ( j  e.  ( 0..^ P )  ->  j  e.  CC )
172anim1ci 341 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( N  e.  ZZ  /\  P  e.  NN ) )
18 zmodcl 10533 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  P  e.  NN )  ->  ( N  mod  P
)  e.  NN0 )
19 nn0cn 9347 . . . . . . . . . . . 12  |-  ( ( N  mod  P )  e.  NN0  ->  ( N  mod  P )  e.  CC )
2017, 18, 193syl 17 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( N  mod  P )  e.  CC )
21203adant3 1022 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  ( N  mod  P )  e.  CC )
2221adantr 276 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( N  mod  P
)  e.  CC )
23 mulcom 8096 . . . . . . . . 9  |-  ( ( j  e.  CC  /\  ( N  mod  P )  e.  CC )  -> 
( j  x.  ( N  mod  P ) )  =  ( ( N  mod  P )  x.  j ) )
2416, 22, 23syl2anr 290 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( j  x.  ( N  mod  P
) )  =  ( ( N  mod  P
)  x.  j ) )
2524oveq2d 5990 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( I  +  ( j  x.  ( N  mod  P ) ) )  =  ( I  +  ( ( N  mod  P )  x.  j ) ) )
2625oveq1d 5989 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( j  x.  ( N  mod  P
) ) )  mod 
P )  =  ( ( I  +  ( ( N  mod  P
)  x.  j ) )  mod  P ) )
27 elfzoelz 10311 . . . . . . . . 9  |-  ( I  e.  ( 0..^ P )  ->  I  e.  ZZ )
2827ad2antlr 489 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  I  e.  ZZ )
29 zq 9789 . . . . . . . 8  |-  ( I  e.  ZZ  ->  I  e.  QQ )
3028, 29syl 14 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  I  e.  QQ )
31 simpll2 1042 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  N  e.  ZZ )
32 zq 9789 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  QQ )
3331, 32syl 14 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  N  e.  QQ )
3415adantl 277 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  j  e.  ZZ )
3523ad2ant1 1023 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  P  e.  NN )
3635ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  P  e.  NN )
37 nnq 9796 . . . . . . . 8  |-  ( P  e.  NN  ->  P  e.  QQ )
3836, 37syl 14 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  P  e.  QQ )
392nnrpd 9858 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  RR+ )
40393ad2ant1 1023 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  P  e.  RR+ )
4140ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  P  e.  RR+ )
4241rpgt0d 9863 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  0  <  P
)
43 modqaddmulmod 10580 . . . . . . 7  |-  ( ( ( I  e.  QQ  /\  N  e.  QQ  /\  j  e.  ZZ )  /\  ( P  e.  QQ  /\  0  <  P ) )  ->  ( (
I  +  ( ( N  mod  P )  x.  j ) )  mod  P )  =  ( ( I  +  ( N  x.  j
) )  mod  P
) )
4430, 33, 34, 38, 42, 43syl32anc 1260 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( ( N  mod  P )  x.  j ) )  mod 
P )  =  ( ( I  +  ( N  x.  j ) )  mod  P ) )
45 zcn 9419 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  CC )
4645adantr 276 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  j  e.  ( 0..^ P ) )  ->  N  e.  CC )
4716adantl 277 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  j  e.  ( 0..^ P ) )  -> 
j  e.  CC )
4846, 47mulcomd 8136 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  j  e.  ( 0..^ P ) )  -> 
( N  x.  j
)  =  ( j  x.  N ) )
4948ex 115 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
j  e.  ( 0..^ P )  ->  ( N  x.  j )  =  ( j  x.  N ) ) )
50493ad2ant2 1024 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
j  e.  ( 0..^ P )  ->  ( N  x.  j )  =  ( j  x.  N ) ) )
5150adantr 276 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( j  e.  ( 0..^ P )  -> 
( N  x.  j
)  =  ( j  x.  N ) ) )
5251imp 124 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( N  x.  j )  =  ( j  x.  N ) )
5352oveq2d 5990 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( I  +  ( N  x.  j
) )  =  ( I  +  ( j  x.  N ) ) )
5453oveq1d 5989 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( N  x.  j ) )  mod 
P )  =  ( ( I  +  ( j  x.  N ) )  mod  P ) )
5526, 44, 543eqtrrd 2247 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( j  x.  N ) )  mod 
P )  =  ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod  P ) )
5655eqeq1d 2218 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( ( I  +  ( j  x.  N ) )  mod  P )  =  0  <->  ( ( I  +  ( j  x.  ( N  mod  P
) ) )  mod 
P )  =  0 ) )
5756rexbidva 2507 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod 
P )  =  0 ) )
5814, 57mpbird 167 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
5958ex 115 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
I  e.  ( 0..^ P )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 983    = wceq 1375    e. wcel 2180    =/= wne 2380   E.wrex 2489   class class class wbr 4062  (class class class)co 5974   CCcc 7965   0cc0 7967   1c1 7968    + caddc 7970    x. cmul 7972    < clt 8149   NNcn 9078   NN0cn0 9337   ZZcz 9414   QQcq 9782   RR+crp 9817  ..^cfzo 10306    mod cmo 10511   Primecprime 12595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-2o 6533  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-n0 9338  df-z 9415  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-fl 10457  df-mod 10512  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-proddc 12028  df-dvds 12265  df-gcd 12441  df-prm 12596  df-phi 12699
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator