ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modprmn0modprm0 Unicode version

Theorem modprmn0modprm0 12787
Description: For an integer not being 0 modulo a given prime number and a nonnegative integer less than the prime number, there is always a second nonnegative integer (less than the given prime number) so that the sum of this second nonnegative integer multiplied with the integer and the first nonnegative integer is 0 ( modulo the given prime number). (Contributed by Alexander van der Vekens, 10-Nov-2018.)
Assertion
Ref Expression
modprmn0modprm0  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
I  e.  ( 0..^ P )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
Distinct variable groups:    j, I    j, N    P, j

Proof of Theorem modprmn0modprm0
StepHypRef Expression
1 simpl1 1024 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  P  e.  Prime )
2 prmnn 12640 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
3 zmodfzo 10577 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  P  e.  NN )  ->  ( N  mod  P
)  e.  ( 0..^ P ) )
42, 3sylan2 286 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  P  e.  Prime )  -> 
( N  mod  P
)  e.  ( 0..^ P ) )
54ancoms 268 . . . . . . 7  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( N  mod  P )  e.  ( 0..^ P ) )
653adant3 1041 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  ( N  mod  P )  e.  ( 0..^ P ) )
7 fzo1fzo0n0 10391 . . . . . . . 8  |-  ( ( N  mod  P )  e.  ( 1..^ P )  <->  ( ( N  mod  P )  e.  ( 0..^ P )  /\  ( N  mod  P )  =/=  0 ) )
87simplbi2com 1487 . . . . . . 7  |-  ( ( N  mod  P )  =/=  0  ->  (
( N  mod  P
)  e.  ( 0..^ P )  ->  ( N  mod  P )  e.  ( 1..^ P ) ) )
983ad2ant3 1044 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
( N  mod  P
)  e.  ( 0..^ P )  ->  ( N  mod  P )  e.  ( 1..^ P ) ) )
106, 9mpd 13 . . . . 5  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  ( N  mod  P )  e.  ( 1..^ P ) )
1110adantr 276 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( N  mod  P
)  e.  ( 1..^ P ) )
12 simpr 110 . . . 4  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  I  e.  ( 0..^ P ) )
13 nnnn0modprm0 12786 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  mod  P )  e.  ( 1..^ P )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod  P )  =  0 )
141, 11, 12, 13syl3anc 1271 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod  P )  =  0 )
15 elfzoelz 10351 . . . . . . . . . 10  |-  ( j  e.  ( 0..^ P )  ->  j  e.  ZZ )
1615zcnd 9578 . . . . . . . . 9  |-  ( j  e.  ( 0..^ P )  ->  j  e.  CC )
172anim1ci 341 . . . . . . . . . . . 12  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( N  e.  ZZ  /\  P  e.  NN ) )
18 zmodcl 10574 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  P  e.  NN )  ->  ( N  mod  P
)  e.  NN0 )
19 nn0cn 9387 . . . . . . . . . . . 12  |-  ( ( N  mod  P )  e.  NN0  ->  ( N  mod  P )  e.  CC )
2017, 18, 193syl 17 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  N  e.  ZZ )  ->  ( N  mod  P )  e.  CC )
21203adant3 1041 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  ( N  mod  P )  e.  CC )
2221adantr 276 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( N  mod  P
)  e.  CC )
23 mulcom 8136 . . . . . . . . 9  |-  ( ( j  e.  CC  /\  ( N  mod  P )  e.  CC )  -> 
( j  x.  ( N  mod  P ) )  =  ( ( N  mod  P )  x.  j ) )
2416, 22, 23syl2anr 290 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( j  x.  ( N  mod  P
) )  =  ( ( N  mod  P
)  x.  j ) )
2524oveq2d 6023 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( I  +  ( j  x.  ( N  mod  P ) ) )  =  ( I  +  ( ( N  mod  P )  x.  j ) ) )
2625oveq1d 6022 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( j  x.  ( N  mod  P
) ) )  mod 
P )  =  ( ( I  +  ( ( N  mod  P
)  x.  j ) )  mod  P ) )
27 elfzoelz 10351 . . . . . . . . 9  |-  ( I  e.  ( 0..^ P )  ->  I  e.  ZZ )
2827ad2antlr 489 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  I  e.  ZZ )
29 zq 9829 . . . . . . . 8  |-  ( I  e.  ZZ  ->  I  e.  QQ )
3028, 29syl 14 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  I  e.  QQ )
31 simpll2 1061 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  N  e.  ZZ )
32 zq 9829 . . . . . . . 8  |-  ( N  e.  ZZ  ->  N  e.  QQ )
3331, 32syl 14 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  N  e.  QQ )
3415adantl 277 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  j  e.  ZZ )
3523ad2ant1 1042 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  P  e.  NN )
3635ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  P  e.  NN )
37 nnq 9836 . . . . . . . 8  |-  ( P  e.  NN  ->  P  e.  QQ )
3836, 37syl 14 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  P  e.  QQ )
392nnrpd 9898 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  RR+ )
40393ad2ant1 1042 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  P  e.  RR+ )
4140ad2antrr 488 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  P  e.  RR+ )
4241rpgt0d 9903 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  0  <  P
)
43 modqaddmulmod 10621 . . . . . . 7  |-  ( ( ( I  e.  QQ  /\  N  e.  QQ  /\  j  e.  ZZ )  /\  ( P  e.  QQ  /\  0  <  P ) )  ->  ( (
I  +  ( ( N  mod  P )  x.  j ) )  mod  P )  =  ( ( I  +  ( N  x.  j
) )  mod  P
) )
4430, 33, 34, 38, 42, 43syl32anc 1279 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( ( N  mod  P )  x.  j ) )  mod 
P )  =  ( ( I  +  ( N  x.  j ) )  mod  P ) )
45 zcn 9459 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  N  e.  CC )
4645adantr 276 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  j  e.  ( 0..^ P ) )  ->  N  e.  CC )
4716adantl 277 . . . . . . . . . . . . 13  |-  ( ( N  e.  ZZ  /\  j  e.  ( 0..^ P ) )  -> 
j  e.  CC )
4846, 47mulcomd 8176 . . . . . . . . . . . 12  |-  ( ( N  e.  ZZ  /\  j  e.  ( 0..^ P ) )  -> 
( N  x.  j
)  =  ( j  x.  N ) )
4948ex 115 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  (
j  e.  ( 0..^ P )  ->  ( N  x.  j )  =  ( j  x.  N ) ) )
50493ad2ant2 1043 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
j  e.  ( 0..^ P )  ->  ( N  x.  j )  =  ( j  x.  N ) ) )
5150adantr 276 . . . . . . . . 9  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( j  e.  ( 0..^ P )  -> 
( N  x.  j
)  =  ( j  x.  N ) ) )
5251imp 124 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( N  x.  j )  =  ( j  x.  N ) )
5352oveq2d 6023 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( I  +  ( N  x.  j
) )  =  ( I  +  ( j  x.  N ) ) )
5453oveq1d 6022 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( N  x.  j ) )  mod 
P )  =  ( ( I  +  ( j  x.  N ) )  mod  P ) )
5526, 44, 543eqtrrd 2267 . . . . 5  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( I  +  ( j  x.  N ) )  mod 
P )  =  ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod  P ) )
5655eqeq1d 2238 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  N  e.  ZZ  /\  ( N  mod  P
)  =/=  0 )  /\  I  e.  ( 0..^ P ) )  /\  j  e.  ( 0..^ P ) )  ->  ( ( ( I  +  ( j  x.  N ) )  mod  P )  =  0  <->  ( ( I  +  ( j  x.  ( N  mod  P
) ) )  mod 
P )  =  0 ) )
5756rexbidva 2527 . . 3  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  -> 
( E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0  <->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  ( N  mod  P ) ) )  mod 
P )  =  0 ) )
5814, 57mpbird 167 . 2  |-  ( ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  /\  I  e.  ( 0..^ P ) )  ->  E. j  e.  (
0..^ P ) ( ( I  +  ( j  x.  N ) )  mod  P )  =  0 )
5958ex 115 1  |-  ( ( P  e.  Prime  /\  N  e.  ZZ  /\  ( N  mod  P )  =/=  0 )  ->  (
I  e.  ( 0..^ P )  ->  E. j  e.  ( 0..^ P ) ( ( I  +  ( j  x.  N
) )  mod  P
)  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   E.wrex 2509   class class class wbr 4083  (class class class)co 6007   CCcc 8005   0cc0 8007   1c1 8008    + caddc 8010    x. cmul 8012    < clt 8189   NNcn 9118   NN0cn0 9377   ZZcz 9454   QQcq 9822   RR+crp 9857  ..^cfzo 10346    mod cmo 10552   Primecprime 12637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-2o 6569  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-proddc 12070  df-dvds 12307  df-gcd 12483  df-prm 12638  df-phi 12741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator