ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irr Unicode version

Theorem logbgcd1irr 15203
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is not rational if the argument and the base are relatively prime. For example,  ( 2 logb  9 )  e.  ( RR  \  QQ ). (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irr  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  ( RR  \  QQ ) )

Proof of Theorem logbgcd1irr
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9640 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
21nnrpd 9769 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  RR+ )
323ad2ant2 1021 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  B  e.  RR+ )
4 1red 8041 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  e.  RR )
5 eluzelre 9611 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  RR )
6 eluz2gt1 9676 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
74, 5, 6gtapd 8664 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  ->  B #  1
)
873ad2ant2 1021 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  B #  1 )
9 eluz2nn 9640 . . . . 5  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
109nnrpd 9769 . . . 4  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  RR+ )
11103ad2ant1 1020 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  X  e.  RR+ )
12 rplogbcl 15182 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  e.  RR )
133, 8, 11, 12syl3anc 1249 . 2  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  RR )
14 eluz2gt1 9676 . . . . . . . . . 10  |-  ( X  e.  ( ZZ>= `  2
)  ->  1  <  X )
1514adantr 276 . . . . . . . . 9  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  1  <  X )
169adantr 276 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  X  e.  NN )
1716nnrpd 9769 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  X  e.  RR+ )
181adantl 277 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  NN )
1918nnrpd 9769 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  RR+ )
206adantl 277 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  1  <  B )
21 logbgt0b 15202 . . . . . . . . . 10  |-  ( ( X  e.  RR+  /\  ( B  e.  RR+  /\  1  <  B ) )  -> 
( 0  <  ( B logb 
X )  <->  1  <  X ) )
2217, 19, 20, 21syl12anc 1247 . . . . . . . . 9  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( 0  <  ( B logb  X )  <->  1  <  X ) )
2315, 22mpbird 167 . . . . . . . 8  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  0  <  ( B logb  X ) )
2423anim1ci 341 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( B logb  X )  e.  QQ )  ->  (
( B logb  X )  e.  QQ  /\  0  < 
( B logb  X ) ) )
25 elpq 9723 . . . . . . 7  |-  ( ( ( B logb  X )  e.  QQ  /\  0  < 
( B logb  X ) )  ->  E. m  e.  NN  E. n  e.  NN  ( B logb 
X )  =  ( m  /  n ) )
2624, 25syl 14 . . . . . 6  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( B logb  X )  e.  QQ )  ->  E. m  e.  NN  E. n  e.  NN  ( B logb  X )  =  ( m  /  n ) )
2726ex 115 . . . . 5  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( B logb 
X )  e.  QQ  ->  E. m  e.  NN  E. n  e.  NN  ( B logb 
X )  =  ( m  /  n ) ) )
28 oveq2 5930 . . . . . . . . . 10  |-  ( ( m  /  n )  =  ( B logb  X )  ->  ( B  ^c  ( m  /  n ) )  =  ( B  ^c 
( B logb  X ) ) )
2928eqcoms 2199 . . . . . . . . 9  |-  ( ( B logb  X )  =  ( m  /  n )  ->  ( B  ^c  ( m  /  n ) )  =  ( B  ^c 
( B logb  X ) ) )
307adantl 277 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B #  1
)
31 rpcxplogb 15200 . . . . . . . . . . 11  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B  ^c  ( B logb  X ) )  =  X )
3219, 30, 17, 31syl3anc 1249 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( B  ^c  ( B logb  X
) )  =  X )
3332adantr 276 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( B logb  X
) )  =  X )
3429, 33sylan9eqr 2251 . . . . . . . 8  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B logb  X )  =  ( m  /  n
) )  ->  ( B  ^c  ( m  /  n ) )  =  X )
3534ex 115 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B logb 
X )  =  ( m  /  n )  ->  ( B  ^c  ( m  /  n ) )  =  X ) )
36 oveq1 5929 . . . . . . . 8  |-  ( ( B  ^c  ( m  /  n ) )  =  X  -> 
( ( B  ^c  ( m  /  n ) ) ^
n )  =  ( X ^ n ) )
3719adantr 276 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  B  e.  RR+ )
38 nnrp 9738 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR+ )
3938ad2antrl 490 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  RR+ )
40 nnrp 9738 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  RR+ )
4140ad2antll 491 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  RR+ )
4239, 41rpdivcld 9789 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( m  /  n )  e.  RR+ )
4342rpred 9771 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( m  /  n )  e.  RR )
44 nncn 8998 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  CC )
4544ad2antll 491 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  CC )
4637, 43, 45cxpmuld 15173 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( ( B  ^c  ( m  /  n ) )  ^c  n ) )
4739rpcnd 9773 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  CC )
4841rpap0d 9777 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n #  0
)
4947, 45, 48divcanap1d 8818 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
m  /  n )  x.  n )  =  m )
5049oveq2d 5938 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( B  ^c  m ) )
511ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  B  e.  NN )
52 nnz 9345 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  ZZ )
5352ad2antrl 490 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  ZZ )
54 cxpexpnn 15132 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  m  e.  ZZ )  ->  ( B  ^c 
m )  =  ( B ^ m ) )
5551, 53, 54syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  m )  =  ( B ^
m ) )
5650, 55eqtrd 2229 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( B ^
m ) )
5737, 43rpcxpcld 15169 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( m  /  n ) )  e.  RR+ )
58 nnz 9345 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
5958ad2antll 491 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  ZZ )
60 cxpexprp 15131 . . . . . . . . . . . 12  |-  ( ( ( B  ^c 
( m  /  n
) )  e.  RR+  /\  n  e.  ZZ )  ->  ( ( B  ^c  ( m  /  n ) )  ^c  n )  =  ( ( B  ^c  ( m  /  n ) ) ^ n ) )
6157, 59, 60syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) )  ^c  n )  =  ( ( B  ^c  ( m  /  n ) ) ^ n ) )
6246, 56, 613eqtr3rd 2238 . . . . . . . . . 10  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) ) ^ n )  =  ( B ^ m
) )
6362eqeq1d 2205 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B  ^c 
( m  /  n
) ) ^ n
)  =  ( X ^ n )  <->  ( B ^ m )  =  ( X ^ n
) ) )
64 simpr 110 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  n  e.  NN )
65 rplpwr 12194 . . . . . . . . . . . . 13  |-  ( ( X  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
( X  gcd  B
)  =  1  -> 
( ( X ^
n )  gcd  B
)  =  1 ) )
6616, 18, 64, 65syl2an3an 1309 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  ( ( X ^ n )  gcd 
B )  =  1 ) )
67 oveq1 5929 . . . . . . . . . . . . . . . . . 18  |-  ( ( X ^ n )  =  ( B ^
m )  ->  (
( X ^ n
)  gcd  B )  =  ( ( B ^ m )  gcd 
B ) )
6867eqeq1d 2205 . . . . . . . . . . . . . . . . 17  |-  ( ( X ^ n )  =  ( B ^
m )  ->  (
( ( X ^
n )  gcd  B
)  =  1  <->  (
( B ^ m
)  gcd  B )  =  1 ) )
6968eqcoms 2199 . . . . . . . . . . . . . . . 16  |-  ( ( B ^ m )  =  ( X ^
n )  ->  (
( ( X ^
n )  gcd  B
)  =  1  <->  (
( B ^ m
)  gcd  B )  =  1 ) )
7069adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( X ^ n )  gcd 
B )  =  1  <-> 
( ( B ^
m )  gcd  B
)  =  1 ) )
71 eluzelz 9610 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  ZZ )
7271adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  ZZ )
73 simpl 109 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  m  e.  NN )
74 rpexp 12321 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  ZZ  /\  B  e.  ZZ  /\  m  e.  NN )  ->  (
( ( B ^
m )  gcd  B
)  =  1  <->  ( B  gcd  B )  =  1 ) )
7572, 72, 73, 74syl2an3an 1309 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B ^ m
)  gcd  B )  =  1  <->  ( B  gcd  B )  =  1 ) )
76 gcdid 12153 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  ZZ  ->  ( B  gcd  B )  =  ( abs `  B
) )
7771, 76syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  gcd  B )  =  ( abs `  B ) )
78 nnnn0 9256 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  NN  ->  B  e.  NN0 )
79 nn0ge0 9274 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  NN0  ->  0  <_  B )
801, 78, 793syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  ( ZZ>= `  2
)  ->  0  <_  B )
815, 80absidd 11332 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( abs `  B )  =  B )
8277, 81eqtrd 2229 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  gcd  B )  =  B )
8382eqeq1d 2205 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( ( B  gcd  B )  =  1  <->  B  =  1
) )
8483ad2antlr 489 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  gcd  B )  =  1  <->  B  =  1
) )
854, 6gtned 8139 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  =/=  1 )
86 eqneqall 2377 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  1  ->  ( B  =/=  1  -> F.  ) )
8785, 86syl5com 29 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  =  1  -> F.  ) )
8887ad2antlr 489 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  =  1  -> F.  ) )
8984, 88sylbid 150 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  gcd  B )  =  1  -> F.  )
)
9075, 89sylbid 150 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B ^ m
)  gcd  B )  =  1  -> F.  ) )
9190adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( B ^ m )  gcd 
B )  =  1  -> F.  ) )
9270, 91sylbid 150 . . . . . . . . . . . . . 14  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( X ^ n )  gcd 
B )  =  1  -> F.  ) )
9392ex 115 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B ^ m )  =  ( X ^ n
)  ->  ( (
( X ^ n
)  gcd  B )  =  1  -> F.  ) ) )
9493com23 78 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( X ^ n
)  gcd  B )  =  1  ->  (
( B ^ m
)  =  ( X ^ n )  -> F.  ) ) )
9566, 94syld 45 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  ( ( B ^ m )  =  ( X ^ n
)  -> F.  )
) )
96 dfnot 1382 . . . . . . . . . . 11  |-  ( -.  ( B ^ m
)  =  ( X ^ n )  <->  ( ( B ^ m )  =  ( X ^ n
)  -> F.  )
)
9795, 96imbitrrdi 162 . . . . . . . . . 10  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  -.  ( B ^ m )  =  ( X ^ n
) ) )
9897con2d 625 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B ^ m )  =  ( X ^ n
)  ->  -.  ( X  gcd  B )  =  1 ) )
9963, 98sylbid 150 . . . . . . . 8  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B  ^c 
( m  /  n
) ) ^ n
)  =  ( X ^ n )  ->  -.  ( X  gcd  B
)  =  1 ) )
10036, 99syl5 32 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) )  =  X  ->  -.  ( X  gcd  B )  =  1 ) )
10135, 100syld 45 . . . . . 6  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B logb 
X )  =  ( m  /  n )  ->  -.  ( X  gcd  B )  =  1 ) )
102101rexlimdvva 2622 . . . . 5  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( E. m  e.  NN  E. n  e.  NN  ( B logb  X )  =  ( m  /  n )  ->  -.  ( X  gcd  B )  =  1 ) )
10327, 102syld 45 . . . 4  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( B logb 
X )  e.  QQ  ->  -.  ( X  gcd  B )  =  1 ) )
104103con2d 625 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( X  gcd  B )  =  1  ->  -.  ( B logb 
X )  e.  QQ ) )
1051043impia 1202 . 2  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  -.  ( B logb  X
)  e.  QQ )
10613, 105eldifd 3167 1  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  ( RR  \  QQ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   F. wfal 1369    e. wcel 2167    =/= wne 2367   E.wrex 2476    \ cdif 3154   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    x. cmul 7884    < clt 8061    <_ cle 8062   # cap 8608    / cdiv 8699   NNcn 8990   2c2 9041   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   QQcq 9693   RR+crp 9728   ^cexp 10630   abscabs 11162    gcd cgcd 12120    ^c ccxp 15093   logb clogb 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-pre-suploc 8000  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-disj 4011  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-ioo 9967  df-ico 9969  df-icc 9970  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-fac 10818  df-bc 10840  df-ihash 10868  df-shft 10980  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-ef 11813  df-e 11814  df-dvds 11953  df-gcd 12121  df-prm 12276  df-rest 12912  df-topgen 12931  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-top 14234  df-topon 14247  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-cncf 14807  df-limced 14892  df-dvap 14893  df-relog 15094  df-rpcxp 15095  df-logb 15180
This theorem is referenced by:  2logb9irr  15207  logbprmirr  15208
  Copyright terms: Public domain W3C validator