ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irr Unicode version

Theorem logbgcd1irr 15489
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is not rational if the argument and the base are relatively prime. For example,  ( 2 logb  9 )  e.  ( RR  \  QQ ). (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irr  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  ( RR  \  QQ ) )

Proof of Theorem logbgcd1irr
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9700 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
21nnrpd 9829 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  RR+ )
323ad2ant2 1022 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  B  e.  RR+ )
4 1red 8100 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  e.  RR )
5 eluzelre 9671 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  RR )
6 eluz2gt1 9736 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
74, 5, 6gtapd 8723 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  ->  B #  1
)
873ad2ant2 1022 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  B #  1 )
9 eluz2nn 9700 . . . . 5  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
109nnrpd 9829 . . . 4  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  RR+ )
11103ad2ant1 1021 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  X  e.  RR+ )
12 rplogbcl 15468 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  e.  RR )
133, 8, 11, 12syl3anc 1250 . 2  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  RR )
14 eluz2gt1 9736 . . . . . . . . . 10  |-  ( X  e.  ( ZZ>= `  2
)  ->  1  <  X )
1514adantr 276 . . . . . . . . 9  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  1  <  X )
169adantr 276 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  X  e.  NN )
1716nnrpd 9829 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  X  e.  RR+ )
181adantl 277 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  NN )
1918nnrpd 9829 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  RR+ )
206adantl 277 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  1  <  B )
21 logbgt0b 15488 . . . . . . . . . 10  |-  ( ( X  e.  RR+  /\  ( B  e.  RR+  /\  1  <  B ) )  -> 
( 0  <  ( B logb 
X )  <->  1  <  X ) )
2217, 19, 20, 21syl12anc 1248 . . . . . . . . 9  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( 0  <  ( B logb  X )  <->  1  <  X ) )
2315, 22mpbird 167 . . . . . . . 8  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  0  <  ( B logb  X ) )
2423anim1ci 341 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( B logb  X )  e.  QQ )  ->  (
( B logb  X )  e.  QQ  /\  0  < 
( B logb  X ) ) )
25 elpq 9783 . . . . . . 7  |-  ( ( ( B logb  X )  e.  QQ  /\  0  < 
( B logb  X ) )  ->  E. m  e.  NN  E. n  e.  NN  ( B logb 
X )  =  ( m  /  n ) )
2624, 25syl 14 . . . . . 6  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( B logb  X )  e.  QQ )  ->  E. m  e.  NN  E. n  e.  NN  ( B logb  X )  =  ( m  /  n ) )
2726ex 115 . . . . 5  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( B logb 
X )  e.  QQ  ->  E. m  e.  NN  E. n  e.  NN  ( B logb 
X )  =  ( m  /  n ) ) )
28 oveq2 5962 . . . . . . . . . 10  |-  ( ( m  /  n )  =  ( B logb  X )  ->  ( B  ^c  ( m  /  n ) )  =  ( B  ^c 
( B logb  X ) ) )
2928eqcoms 2209 . . . . . . . . 9  |-  ( ( B logb  X )  =  ( m  /  n )  ->  ( B  ^c  ( m  /  n ) )  =  ( B  ^c 
( B logb  X ) ) )
307adantl 277 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B #  1
)
31 rpcxplogb 15486 . . . . . . . . . . 11  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B  ^c  ( B logb  X ) )  =  X )
3219, 30, 17, 31syl3anc 1250 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( B  ^c  ( B logb  X
) )  =  X )
3332adantr 276 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( B logb  X
) )  =  X )
3429, 33sylan9eqr 2261 . . . . . . . 8  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B logb  X )  =  ( m  /  n
) )  ->  ( B  ^c  ( m  /  n ) )  =  X )
3534ex 115 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B logb 
X )  =  ( m  /  n )  ->  ( B  ^c  ( m  /  n ) )  =  X ) )
36 oveq1 5961 . . . . . . . 8  |-  ( ( B  ^c  ( m  /  n ) )  =  X  -> 
( ( B  ^c  ( m  /  n ) ) ^
n )  =  ( X ^ n ) )
3719adantr 276 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  B  e.  RR+ )
38 nnrp 9798 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR+ )
3938ad2antrl 490 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  RR+ )
40 nnrp 9798 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  RR+ )
4140ad2antll 491 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  RR+ )
4239, 41rpdivcld 9849 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( m  /  n )  e.  RR+ )
4342rpred 9831 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( m  /  n )  e.  RR )
44 nncn 9057 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  CC )
4544ad2antll 491 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  CC )
4637, 43, 45cxpmuld 15459 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( ( B  ^c  ( m  /  n ) )  ^c  n ) )
4739rpcnd 9833 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  CC )
4841rpap0d 9837 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n #  0
)
4947, 45, 48divcanap1d 8877 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
m  /  n )  x.  n )  =  m )
5049oveq2d 5970 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( B  ^c  m ) )
511ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  B  e.  NN )
52 nnz 9404 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  ZZ )
5352ad2antrl 490 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  ZZ )
54 cxpexpnn 15418 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  m  e.  ZZ )  ->  ( B  ^c 
m )  =  ( B ^ m ) )
5551, 53, 54syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  m )  =  ( B ^
m ) )
5650, 55eqtrd 2239 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( B ^
m ) )
5737, 43rpcxpcld 15455 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( m  /  n ) )  e.  RR+ )
58 nnz 9404 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
5958ad2antll 491 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  ZZ )
60 cxpexprp 15417 . . . . . . . . . . . 12  |-  ( ( ( B  ^c 
( m  /  n
) )  e.  RR+  /\  n  e.  ZZ )  ->  ( ( B  ^c  ( m  /  n ) )  ^c  n )  =  ( ( B  ^c  ( m  /  n ) ) ^ n ) )
6157, 59, 60syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) )  ^c  n )  =  ( ( B  ^c  ( m  /  n ) ) ^ n ) )
6246, 56, 613eqtr3rd 2248 . . . . . . . . . 10  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) ) ^ n )  =  ( B ^ m
) )
6362eqeq1d 2215 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B  ^c 
( m  /  n
) ) ^ n
)  =  ( X ^ n )  <->  ( B ^ m )  =  ( X ^ n
) ) )
64 simpr 110 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  n  e.  NN )
65 rplpwr 12398 . . . . . . . . . . . . 13  |-  ( ( X  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
( X  gcd  B
)  =  1  -> 
( ( X ^
n )  gcd  B
)  =  1 ) )
6616, 18, 64, 65syl2an3an 1311 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  ( ( X ^ n )  gcd 
B )  =  1 ) )
67 oveq1 5961 . . . . . . . . . . . . . . . . . 18  |-  ( ( X ^ n )  =  ( B ^
m )  ->  (
( X ^ n
)  gcd  B )  =  ( ( B ^ m )  gcd 
B ) )
6867eqeq1d 2215 . . . . . . . . . . . . . . . . 17  |-  ( ( X ^ n )  =  ( B ^
m )  ->  (
( ( X ^
n )  gcd  B
)  =  1  <->  (
( B ^ m
)  gcd  B )  =  1 ) )
6968eqcoms 2209 . . . . . . . . . . . . . . . 16  |-  ( ( B ^ m )  =  ( X ^
n )  ->  (
( ( X ^
n )  gcd  B
)  =  1  <->  (
( B ^ m
)  gcd  B )  =  1 ) )
7069adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( X ^ n )  gcd 
B )  =  1  <-> 
( ( B ^
m )  gcd  B
)  =  1 ) )
71 eluzelz 9670 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  ZZ )
7271adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  ZZ )
73 simpl 109 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  m  e.  NN )
74 rpexp 12525 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  ZZ  /\  B  e.  ZZ  /\  m  e.  NN )  ->  (
( ( B ^
m )  gcd  B
)  =  1  <->  ( B  gcd  B )  =  1 ) )
7572, 72, 73, 74syl2an3an 1311 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B ^ m
)  gcd  B )  =  1  <->  ( B  gcd  B )  =  1 ) )
76 gcdid 12357 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  ZZ  ->  ( B  gcd  B )  =  ( abs `  B
) )
7771, 76syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  gcd  B )  =  ( abs `  B ) )
78 nnnn0 9315 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  NN  ->  B  e.  NN0 )
79 nn0ge0 9333 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  NN0  ->  0  <_  B )
801, 78, 793syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  ( ZZ>= `  2
)  ->  0  <_  B )
815, 80absidd 11528 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( abs `  B )  =  B )
8277, 81eqtrd 2239 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  gcd  B )  =  B )
8382eqeq1d 2215 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( ( B  gcd  B )  =  1  <->  B  =  1
) )
8483ad2antlr 489 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  gcd  B )  =  1  <->  B  =  1
) )
854, 6gtned 8198 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  =/=  1 )
86 eqneqall 2387 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  1  ->  ( B  =/=  1  -> F.  ) )
8785, 86syl5com 29 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  =  1  -> F.  ) )
8887ad2antlr 489 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  =  1  -> F.  ) )
8984, 88sylbid 150 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  gcd  B )  =  1  -> F.  )
)
9075, 89sylbid 150 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B ^ m
)  gcd  B )  =  1  -> F.  ) )
9190adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( B ^ m )  gcd 
B )  =  1  -> F.  ) )
9270, 91sylbid 150 . . . . . . . . . . . . . 14  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( X ^ n )  gcd 
B )  =  1  -> F.  ) )
9392ex 115 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B ^ m )  =  ( X ^ n
)  ->  ( (
( X ^ n
)  gcd  B )  =  1  -> F.  ) ) )
9493com23 78 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( X ^ n
)  gcd  B )  =  1  ->  (
( B ^ m
)  =  ( X ^ n )  -> F.  ) ) )
9566, 94syld 45 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  ( ( B ^ m )  =  ( X ^ n
)  -> F.  )
) )
96 dfnot 1391 . . . . . . . . . . 11  |-  ( -.  ( B ^ m
)  =  ( X ^ n )  <->  ( ( B ^ m )  =  ( X ^ n
)  -> F.  )
)
9795, 96imbitrrdi 162 . . . . . . . . . 10  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  -.  ( B ^ m )  =  ( X ^ n
) ) )
9897con2d 625 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B ^ m )  =  ( X ^ n
)  ->  -.  ( X  gcd  B )  =  1 ) )
9963, 98sylbid 150 . . . . . . . 8  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B  ^c 
( m  /  n
) ) ^ n
)  =  ( X ^ n )  ->  -.  ( X  gcd  B
)  =  1 ) )
10036, 99syl5 32 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) )  =  X  ->  -.  ( X  gcd  B )  =  1 ) )
10135, 100syld 45 . . . . . 6  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B logb 
X )  =  ( m  /  n )  ->  -.  ( X  gcd  B )  =  1 ) )
102101rexlimdvva 2632 . . . . 5  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( E. m  e.  NN  E. n  e.  NN  ( B logb  X )  =  ( m  /  n )  ->  -.  ( X  gcd  B )  =  1 ) )
10327, 102syld 45 . . . 4  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( B logb 
X )  e.  QQ  ->  -.  ( X  gcd  B )  =  1 ) )
104103con2d 625 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( X  gcd  B )  =  1  ->  -.  ( B logb 
X )  e.  QQ ) )
1051043impia 1203 . 2  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  -.  ( B logb  X
)  e.  QQ )
10613, 105eldifd 3178 1  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  ( RR  \  QQ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   F. wfal 1378    e. wcel 2177    =/= wne 2377   E.wrex 2486    \ cdif 3165   class class class wbr 4048   ` cfv 5277  (class class class)co 5954   CCcc 7936   RRcr 7937   0cc0 7938   1c1 7939    x. cmul 7943    < clt 8120    <_ cle 8121   # cap 8667    / cdiv 8758   NNcn 9049   2c2 9100   NN0cn0 9308   ZZcz 9385   ZZ>=cuz 9661   QQcq 9753   RR+crp 9788   ^cexp 10696   abscabs 11358    gcd cgcd 12324    ^c ccxp 15379   logb clogb 15465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057  ax-caucvg 8058  ax-pre-suploc 8059  ax-addf 8060  ax-mulf 8061
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-disj 4025  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-po 4348  df-iso 4349  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-isom 5286  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-of 6168  df-1st 6236  df-2nd 6237  df-recs 6401  df-irdg 6466  df-frec 6487  df-1o 6512  df-2o 6513  df-oadd 6516  df-er 6630  df-map 6747  df-pm 6748  df-en 6838  df-dom 6839  df-fin 6840  df-sup 7098  df-inf 7099  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789  df-xneg 9907  df-xadd 9908  df-ioo 10027  df-ico 10029  df-icc 10030  df-fz 10144  df-fzo 10278  df-fl 10426  df-mod 10481  df-seqfrec 10606  df-exp 10697  df-fac 10884  df-bc 10906  df-ihash 10934  df-shft 11176  df-cj 11203  df-re 11204  df-im 11205  df-rsqrt 11359  df-abs 11360  df-clim 11640  df-sumdc 11715  df-ef 12009  df-e 12010  df-dvds 12149  df-gcd 12325  df-prm 12480  df-rest 13123  df-topgen 13142  df-psmet 14355  df-xmet 14356  df-met 14357  df-bl 14358  df-mopn 14359  df-top 14520  df-topon 14533  df-bases 14565  df-ntr 14618  df-cn 14710  df-cnp 14711  df-tx 14775  df-cncf 15093  df-limced 15178  df-dvap 15179  df-relog 15380  df-rpcxp 15381  df-logb 15466
This theorem is referenced by:  2logb9irr  15493  logbprmirr  15494
  Copyright terms: Public domain W3C validator