ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irr Unicode version

Theorem logbgcd1irr 13679
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is not rational if the argument and the base are relatively prime. For example,  ( 2 logb  9 )  e.  ( RR  \  QQ ). (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irr  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  ( RR  \  QQ ) )

Proof of Theorem logbgcd1irr
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9525 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
21nnrpd 9651 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  RR+ )
323ad2ant2 1014 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  B  e.  RR+ )
4 1red 7935 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  e.  RR )
5 eluzelre 9497 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  RR )
6 eluz2gt1 9561 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
74, 5, 6gtapd 8556 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  ->  B #  1
)
873ad2ant2 1014 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  B #  1 )
9 eluz2nn 9525 . . . . 5  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
109nnrpd 9651 . . . 4  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  RR+ )
11103ad2ant1 1013 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  X  e.  RR+ )
12 rplogbcl 13658 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  e.  RR )
133, 8, 11, 12syl3anc 1233 . 2  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  RR )
14 eluz2gt1 9561 . . . . . . . . . 10  |-  ( X  e.  ( ZZ>= `  2
)  ->  1  <  X )
1514adantr 274 . . . . . . . . 9  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  1  <  X )
169adantr 274 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  X  e.  NN )
1716nnrpd 9651 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  X  e.  RR+ )
181adantl 275 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  NN )
1918nnrpd 9651 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  RR+ )
206adantl 275 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  1  <  B )
21 logbgt0b 13678 . . . . . . . . . 10  |-  ( ( X  e.  RR+  /\  ( B  e.  RR+  /\  1  <  B ) )  -> 
( 0  <  ( B logb 
X )  <->  1  <  X ) )
2217, 19, 20, 21syl12anc 1231 . . . . . . . . 9  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( 0  <  ( B logb  X )  <->  1  <  X ) )
2315, 22mpbird 166 . . . . . . . 8  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  0  <  ( B logb  X ) )
2423anim1ci 339 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( B logb  X )  e.  QQ )  ->  (
( B logb  X )  e.  QQ  /\  0  < 
( B logb  X ) ) )
25 elpq 9607 . . . . . . 7  |-  ( ( ( B logb  X )  e.  QQ  /\  0  < 
( B logb  X ) )  ->  E. m  e.  NN  E. n  e.  NN  ( B logb 
X )  =  ( m  /  n ) )
2624, 25syl 14 . . . . . 6  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( B logb  X )  e.  QQ )  ->  E. m  e.  NN  E. n  e.  NN  ( B logb  X )  =  ( m  /  n ) )
2726ex 114 . . . . 5  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( B logb 
X )  e.  QQ  ->  E. m  e.  NN  E. n  e.  NN  ( B logb 
X )  =  ( m  /  n ) ) )
28 oveq2 5861 . . . . . . . . . 10  |-  ( ( m  /  n )  =  ( B logb  X )  ->  ( B  ^c  ( m  /  n ) )  =  ( B  ^c 
( B logb  X ) ) )
2928eqcoms 2173 . . . . . . . . 9  |-  ( ( B logb  X )  =  ( m  /  n )  ->  ( B  ^c  ( m  /  n ) )  =  ( B  ^c 
( B logb  X ) ) )
307adantl 275 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B #  1
)
31 rpcxplogb 13676 . . . . . . . . . . 11  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B  ^c  ( B logb  X ) )  =  X )
3219, 30, 17, 31syl3anc 1233 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( B  ^c  ( B logb  X
) )  =  X )
3332adantr 274 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( B logb  X
) )  =  X )
3429, 33sylan9eqr 2225 . . . . . . . 8  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B logb  X )  =  ( m  /  n
) )  ->  ( B  ^c  ( m  /  n ) )  =  X )
3534ex 114 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B logb 
X )  =  ( m  /  n )  ->  ( B  ^c  ( m  /  n ) )  =  X ) )
36 oveq1 5860 . . . . . . . 8  |-  ( ( B  ^c  ( m  /  n ) )  =  X  -> 
( ( B  ^c  ( m  /  n ) ) ^
n )  =  ( X ^ n ) )
3719adantr 274 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  B  e.  RR+ )
38 nnrp 9620 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR+ )
3938ad2antrl 487 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  RR+ )
40 nnrp 9620 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  RR+ )
4140ad2antll 488 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  RR+ )
4239, 41rpdivcld 9671 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( m  /  n )  e.  RR+ )
4342rpred 9653 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( m  /  n )  e.  RR )
44 nncn 8886 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  CC )
4544ad2antll 488 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  CC )
4637, 43, 45cxpmuld 13650 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( ( B  ^c  ( m  /  n ) )  ^c  n ) )
4739rpcnd 9655 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  CC )
4841rpap0d 9659 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n #  0
)
4947, 45, 48divcanap1d 8708 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
m  /  n )  x.  n )  =  m )
5049oveq2d 5869 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( B  ^c  m ) )
511ad2antlr 486 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  B  e.  NN )
52 nnz 9231 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  ZZ )
5352ad2antrl 487 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  ZZ )
54 cxpexpnn 13611 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  m  e.  ZZ )  ->  ( B  ^c 
m )  =  ( B ^ m ) )
5551, 53, 54syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  m )  =  ( B ^
m ) )
5650, 55eqtrd 2203 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( B ^
m ) )
5737, 43rpcxpcld 13646 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( m  /  n ) )  e.  RR+ )
58 nnz 9231 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
5958ad2antll 488 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  ZZ )
60 cxpexprp 13610 . . . . . . . . . . . 12  |-  ( ( ( B  ^c 
( m  /  n
) )  e.  RR+  /\  n  e.  ZZ )  ->  ( ( B  ^c  ( m  /  n ) )  ^c  n )  =  ( ( B  ^c  ( m  /  n ) ) ^ n ) )
6157, 59, 60syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) )  ^c  n )  =  ( ( B  ^c  ( m  /  n ) ) ^ n ) )
6246, 56, 613eqtr3rd 2212 . . . . . . . . . 10  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) ) ^ n )  =  ( B ^ m
) )
6362eqeq1d 2179 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B  ^c 
( m  /  n
) ) ^ n
)  =  ( X ^ n )  <->  ( B ^ m )  =  ( X ^ n
) ) )
64 simpr 109 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  n  e.  NN )
65 rplpwr 11982 . . . . . . . . . . . . 13  |-  ( ( X  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
( X  gcd  B
)  =  1  -> 
( ( X ^
n )  gcd  B
)  =  1 ) )
6616, 18, 64, 65syl2an3an 1293 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  ( ( X ^ n )  gcd 
B )  =  1 ) )
67 oveq1 5860 . . . . . . . . . . . . . . . . . 18  |-  ( ( X ^ n )  =  ( B ^
m )  ->  (
( X ^ n
)  gcd  B )  =  ( ( B ^ m )  gcd 
B ) )
6867eqeq1d 2179 . . . . . . . . . . . . . . . . 17  |-  ( ( X ^ n )  =  ( B ^
m )  ->  (
( ( X ^
n )  gcd  B
)  =  1  <->  (
( B ^ m
)  gcd  B )  =  1 ) )
6968eqcoms 2173 . . . . . . . . . . . . . . . 16  |-  ( ( B ^ m )  =  ( X ^
n )  ->  (
( ( X ^
n )  gcd  B
)  =  1  <->  (
( B ^ m
)  gcd  B )  =  1 ) )
7069adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( X ^ n )  gcd 
B )  =  1  <-> 
( ( B ^
m )  gcd  B
)  =  1 ) )
71 eluzelz 9496 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  ZZ )
7271adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  ZZ )
73 simpl 108 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  m  e.  NN )
74 rpexp 12107 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  ZZ  /\  B  e.  ZZ  /\  m  e.  NN )  ->  (
( ( B ^
m )  gcd  B
)  =  1  <->  ( B  gcd  B )  =  1 ) )
7572, 72, 73, 74syl2an3an 1293 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B ^ m
)  gcd  B )  =  1  <->  ( B  gcd  B )  =  1 ) )
76 gcdid 11941 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  ZZ  ->  ( B  gcd  B )  =  ( abs `  B
) )
7771, 76syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  gcd  B )  =  ( abs `  B ) )
78 nnnn0 9142 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  NN  ->  B  e.  NN0 )
79 nn0ge0 9160 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  NN0  ->  0  <_  B )
801, 78, 793syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  ( ZZ>= `  2
)  ->  0  <_  B )
815, 80absidd 11131 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( abs `  B )  =  B )
8277, 81eqtrd 2203 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  gcd  B )  =  B )
8382eqeq1d 2179 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( ( B  gcd  B )  =  1  <->  B  =  1
) )
8483ad2antlr 486 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  gcd  B )  =  1  <->  B  =  1
) )
854, 6gtned 8032 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  =/=  1 )
86 eqneqall 2350 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  1  ->  ( B  =/=  1  -> F.  ) )
8785, 86syl5com 29 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  =  1  -> F.  ) )
8887ad2antlr 486 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  =  1  -> F.  ) )
8984, 88sylbid 149 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  gcd  B )  =  1  -> F.  )
)
9075, 89sylbid 149 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B ^ m
)  gcd  B )  =  1  -> F.  ) )
9190adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( B ^ m )  gcd 
B )  =  1  -> F.  ) )
9270, 91sylbid 149 . . . . . . . . . . . . . 14  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( X ^ n )  gcd 
B )  =  1  -> F.  ) )
9392ex 114 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B ^ m )  =  ( X ^ n
)  ->  ( (
( X ^ n
)  gcd  B )  =  1  -> F.  ) ) )
9493com23 78 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( X ^ n
)  gcd  B )  =  1  ->  (
( B ^ m
)  =  ( X ^ n )  -> F.  ) ) )
9566, 94syld 45 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  ( ( B ^ m )  =  ( X ^ n
)  -> F.  )
) )
96 dfnot 1366 . . . . . . . . . . 11  |-  ( -.  ( B ^ m
)  =  ( X ^ n )  <->  ( ( B ^ m )  =  ( X ^ n
)  -> F.  )
)
9795, 96syl6ibr 161 . . . . . . . . . 10  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  -.  ( B ^ m )  =  ( X ^ n
) ) )
9897con2d 619 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B ^ m )  =  ( X ^ n
)  ->  -.  ( X  gcd  B )  =  1 ) )
9963, 98sylbid 149 . . . . . . . 8  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B  ^c 
( m  /  n
) ) ^ n
)  =  ( X ^ n )  ->  -.  ( X  gcd  B
)  =  1 ) )
10036, 99syl5 32 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) )  =  X  ->  -.  ( X  gcd  B )  =  1 ) )
10135, 100syld 45 . . . . . 6  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B logb 
X )  =  ( m  /  n )  ->  -.  ( X  gcd  B )  =  1 ) )
102101rexlimdvva 2595 . . . . 5  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( E. m  e.  NN  E. n  e.  NN  ( B logb  X )  =  ( m  /  n )  ->  -.  ( X  gcd  B )  =  1 ) )
10327, 102syld 45 . . . 4  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( B logb 
X )  e.  QQ  ->  -.  ( X  gcd  B )  =  1 ) )
104103con2d 619 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( X  gcd  B )  =  1  ->  -.  ( B logb 
X )  e.  QQ ) )
1051043impia 1195 . 2  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  -.  ( B logb  X
)  e.  QQ )
10613, 105eldifd 3131 1  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  ( RR  \  QQ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348   F. wfal 1353    e. wcel 2141    =/= wne 2340   E.wrex 2449    \ cdif 3118   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    x. cmul 7779    < clt 7954    <_ cle 7955   # cap 8500    / cdiv 8589   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   QQcq 9578   RR+crp 9610   ^cexp 10475   abscabs 10961    gcd cgcd 11897    ^c ccxp 13572   logb clogb 13655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894  ax-pre-suploc 7895  ax-addf 7896  ax-mulf 7897
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-disj 3967  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-of 6061  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-frec 6370  df-1o 6395  df-2o 6396  df-oadd 6399  df-er 6513  df-map 6628  df-pm 6629  df-en 6719  df-dom 6720  df-fin 6721  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-xneg 9729  df-xadd 9730  df-ioo 9849  df-ico 9851  df-icc 9852  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-fac 10660  df-bc 10682  df-ihash 10710  df-shft 10779  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-clim 11242  df-sumdc 11317  df-ef 11611  df-e 11612  df-dvds 11750  df-gcd 11898  df-prm 12062  df-rest 12581  df-topgen 12600  df-psmet 12781  df-xmet 12782  df-met 12783  df-bl 12784  df-mopn 12785  df-top 12790  df-topon 12803  df-bases 12835  df-ntr 12890  df-cn 12982  df-cnp 12983  df-tx 13047  df-cncf 13352  df-limced 13419  df-dvap 13420  df-relog 13573  df-rpcxp 13574  df-logb 13656
This theorem is referenced by:  2logb9irr  13683  logbprmirr  13684
  Copyright terms: Public domain W3C validator