ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irr Unicode version

Theorem logbgcd1irr 13223
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is not rational if the argument and the base are relatively prime. For example,  ( 2 logb  9 )  e.  ( RR  \  QQ ) (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irr  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  ( RR  \  QQ ) )

Proof of Theorem logbgcd1irr
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9456 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
21nnrpd 9579 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  RR+ )
323ad2ant2 1004 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  B  e.  RR+ )
4 1red 7872 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  e.  RR )
5 eluzelre 9428 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  RR )
6 eluz2gt1 9491 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
74, 5, 6gtapd 8491 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  ->  B #  1
)
873ad2ant2 1004 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  B #  1 )
9 eluz2nn 9456 . . . . 5  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
109nnrpd 9579 . . . 4  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  RR+ )
11103ad2ant1 1003 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  X  e.  RR+ )
12 rplogbcl 13202 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  e.  RR )
133, 8, 11, 12syl3anc 1217 . 2  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  RR )
14 eluz2gt1 9491 . . . . . . . . . 10  |-  ( X  e.  ( ZZ>= `  2
)  ->  1  <  X )
1514adantr 274 . . . . . . . . 9  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  1  <  X )
169adantr 274 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  X  e.  NN )
1716nnrpd 9579 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  X  e.  RR+ )
181adantl 275 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  NN )
1918nnrpd 9579 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  RR+ )
206adantl 275 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  1  <  B )
21 logbgt0b 13222 . . . . . . . . . 10  |-  ( ( X  e.  RR+  /\  ( B  e.  RR+  /\  1  <  B ) )  -> 
( 0  <  ( B logb 
X )  <->  1  <  X ) )
2217, 19, 20, 21syl12anc 1215 . . . . . . . . 9  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( 0  <  ( B logb  X )  <->  1  <  X ) )
2315, 22mpbird 166 . . . . . . . 8  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  0  <  ( B logb  X ) )
2423anim1ci 339 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( B logb  X )  e.  QQ )  ->  (
( B logb  X )  e.  QQ  /\  0  < 
( B logb  X ) ) )
25 elpq 9535 . . . . . . 7  |-  ( ( ( B logb  X )  e.  QQ  /\  0  < 
( B logb  X ) )  ->  E. m  e.  NN  E. n  e.  NN  ( B logb 
X )  =  ( m  /  n ) )
2624, 25syl 14 . . . . . 6  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( B logb  X )  e.  QQ )  ->  E. m  e.  NN  E. n  e.  NN  ( B logb  X )  =  ( m  /  n ) )
2726ex 114 . . . . 5  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( B logb 
X )  e.  QQ  ->  E. m  e.  NN  E. n  e.  NN  ( B logb 
X )  =  ( m  /  n ) ) )
28 oveq2 5822 . . . . . . . . . 10  |-  ( ( m  /  n )  =  ( B logb  X )  ->  ( B  ^c  ( m  /  n ) )  =  ( B  ^c 
( B logb  X ) ) )
2928eqcoms 2157 . . . . . . . . 9  |-  ( ( B logb  X )  =  ( m  /  n )  ->  ( B  ^c  ( m  /  n ) )  =  ( B  ^c 
( B logb  X ) ) )
307adantl 275 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B #  1
)
31 rpcxplogb 13220 . . . . . . . . . . 11  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B  ^c  ( B logb  X ) )  =  X )
3219, 30, 17, 31syl3anc 1217 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( B  ^c  ( B logb  X
) )  =  X )
3332adantr 274 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( B logb  X
) )  =  X )
3429, 33sylan9eqr 2209 . . . . . . . 8  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B logb  X )  =  ( m  /  n
) )  ->  ( B  ^c  ( m  /  n ) )  =  X )
3534ex 114 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B logb 
X )  =  ( m  /  n )  ->  ( B  ^c  ( m  /  n ) )  =  X ) )
36 oveq1 5821 . . . . . . . 8  |-  ( ( B  ^c  ( m  /  n ) )  =  X  -> 
( ( B  ^c  ( m  /  n ) ) ^
n )  =  ( X ^ n ) )
3719adantr 274 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  B  e.  RR+ )
38 nnrp 9548 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR+ )
3938ad2antrl 482 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  RR+ )
40 nnrp 9548 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  RR+ )
4140ad2antll 483 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  RR+ )
4239, 41rpdivcld 9599 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( m  /  n )  e.  RR+ )
4342rpred 9581 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( m  /  n )  e.  RR )
44 nncn 8820 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  CC )
4544ad2antll 483 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  CC )
4637, 43, 45cxpmuld 13195 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( ( B  ^c  ( m  /  n ) )  ^c  n ) )
4739rpcnd 9583 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  CC )
4841rpap0d 9587 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n #  0
)
4947, 45, 48divcanap1d 8643 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
m  /  n )  x.  n )  =  m )
5049oveq2d 5830 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( B  ^c  m ) )
511ad2antlr 481 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  B  e.  NN )
52 nnz 9165 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  ZZ )
5352ad2antrl 482 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  ZZ )
54 cxpexpnn 13156 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  m  e.  ZZ )  ->  ( B  ^c 
m )  =  ( B ^ m ) )
5551, 53, 54syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  m )  =  ( B ^
m ) )
5650, 55eqtrd 2187 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( B ^
m ) )
5737, 43rpcxpcld 13191 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( m  /  n ) )  e.  RR+ )
58 nnz 9165 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
5958ad2antll 483 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  ZZ )
60 cxpexprp 13155 . . . . . . . . . . . 12  |-  ( ( ( B  ^c 
( m  /  n
) )  e.  RR+  /\  n  e.  ZZ )  ->  ( ( B  ^c  ( m  /  n ) )  ^c  n )  =  ( ( B  ^c  ( m  /  n ) ) ^ n ) )
6157, 59, 60syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) )  ^c  n )  =  ( ( B  ^c  ( m  /  n ) ) ^ n ) )
6246, 56, 613eqtr3rd 2196 . . . . . . . . . 10  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) ) ^ n )  =  ( B ^ m
) )
6362eqeq1d 2163 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B  ^c 
( m  /  n
) ) ^ n
)  =  ( X ^ n )  <->  ( B ^ m )  =  ( X ^ n
) ) )
64 simpr 109 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  n  e.  NN )
65 rplpwr 11882 . . . . . . . . . . . . 13  |-  ( ( X  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
( X  gcd  B
)  =  1  -> 
( ( X ^
n )  gcd  B
)  =  1 ) )
6616, 18, 64, 65syl2an3an 1277 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  ( ( X ^ n )  gcd 
B )  =  1 ) )
67 oveq1 5821 . . . . . . . . . . . . . . . . . 18  |-  ( ( X ^ n )  =  ( B ^
m )  ->  (
( X ^ n
)  gcd  B )  =  ( ( B ^ m )  gcd 
B ) )
6867eqeq1d 2163 . . . . . . . . . . . . . . . . 17  |-  ( ( X ^ n )  =  ( B ^
m )  ->  (
( ( X ^
n )  gcd  B
)  =  1  <->  (
( B ^ m
)  gcd  B )  =  1 ) )
6968eqcoms 2157 . . . . . . . . . . . . . . . 16  |-  ( ( B ^ m )  =  ( X ^
n )  ->  (
( ( X ^
n )  gcd  B
)  =  1  <->  (
( B ^ m
)  gcd  B )  =  1 ) )
7069adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( X ^ n )  gcd 
B )  =  1  <-> 
( ( B ^
m )  gcd  B
)  =  1 ) )
71 eluzelz 9427 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  ZZ )
7271adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  ZZ )
73 simpl 108 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  m  e.  NN )
74 rpexp 11998 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  ZZ  /\  B  e.  ZZ  /\  m  e.  NN )  ->  (
( ( B ^
m )  gcd  B
)  =  1  <->  ( B  gcd  B )  =  1 ) )
7572, 72, 73, 74syl2an3an 1277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B ^ m
)  gcd  B )  =  1  <->  ( B  gcd  B )  =  1 ) )
76 gcdid 11841 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  ZZ  ->  ( B  gcd  B )  =  ( abs `  B
) )
7771, 76syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  gcd  B )  =  ( abs `  B ) )
78 nnnn0 9076 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  NN  ->  B  e.  NN0 )
79 nn0ge0 9094 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  NN0  ->  0  <_  B )
801, 78, 793syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  ( ZZ>= `  2
)  ->  0  <_  B )
815, 80absidd 11044 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( abs `  B )  =  B )
8277, 81eqtrd 2187 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  gcd  B )  =  B )
8382eqeq1d 2163 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( ( B  gcd  B )  =  1  <->  B  =  1
) )
8483ad2antlr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  gcd  B )  =  1  <->  B  =  1
) )
854, 6gtned 7968 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  =/=  1 )
86 eqneqall 2334 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  1  ->  ( B  =/=  1  -> F.  ) )
8785, 86syl5com 29 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  =  1  -> F.  ) )
8887ad2antlr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  =  1  -> F.  ) )
8984, 88sylbid 149 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  gcd  B )  =  1  -> F.  )
)
9075, 89sylbid 149 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B ^ m
)  gcd  B )  =  1  -> F.  ) )
9190adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( B ^ m )  gcd 
B )  =  1  -> F.  ) )
9270, 91sylbid 149 . . . . . . . . . . . . . 14  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( X ^ n )  gcd 
B )  =  1  -> F.  ) )
9392ex 114 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B ^ m )  =  ( X ^ n
)  ->  ( (
( X ^ n
)  gcd  B )  =  1  -> F.  ) ) )
9493com23 78 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( X ^ n
)  gcd  B )  =  1  ->  (
( B ^ m
)  =  ( X ^ n )  -> F.  ) ) )
9566, 94syld 45 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  ( ( B ^ m )  =  ( X ^ n
)  -> F.  )
) )
96 dfnot 1350 . . . . . . . . . . 11  |-  ( -.  ( B ^ m
)  =  ( X ^ n )  <->  ( ( B ^ m )  =  ( X ^ n
)  -> F.  )
)
9795, 96syl6ibr 161 . . . . . . . . . 10  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  -.  ( B ^ m )  =  ( X ^ n
) ) )
9897con2d 614 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B ^ m )  =  ( X ^ n
)  ->  -.  ( X  gcd  B )  =  1 ) )
9963, 98sylbid 149 . . . . . . . 8  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B  ^c 
( m  /  n
) ) ^ n
)  =  ( X ^ n )  ->  -.  ( X  gcd  B
)  =  1 ) )
10036, 99syl5 32 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) )  =  X  ->  -.  ( X  gcd  B )  =  1 ) )
10135, 100syld 45 . . . . . 6  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B logb 
X )  =  ( m  /  n )  ->  -.  ( X  gcd  B )  =  1 ) )
102101rexlimdvva 2579 . . . . 5  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( E. m  e.  NN  E. n  e.  NN  ( B logb  X )  =  ( m  /  n )  ->  -.  ( X  gcd  B )  =  1 ) )
10327, 102syld 45 . . . 4  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( B logb 
X )  e.  QQ  ->  -.  ( X  gcd  B )  =  1 ) )
104103con2d 614 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( X  gcd  B )  =  1  ->  -.  ( B logb 
X )  e.  QQ ) )
1051043impia 1179 . 2  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  -.  ( B logb  X
)  e.  QQ )
10613, 105eldifd 3108 1  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  ( RR  \  QQ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332   F. wfal 1337    e. wcel 2125    =/= wne 2324   E.wrex 2433    \ cdif 3095   class class class wbr 3961   ` cfv 5163  (class class class)co 5814   CCcc 7709   RRcr 7710   0cc0 7711   1c1 7712    x. cmul 7716    < clt 7891    <_ cle 7892   # cap 8435    / cdiv 8524   NNcn 8812   2c2 8863   NN0cn0 9069   ZZcz 9146   ZZ>=cuz 9418   QQcq 9506   RR+crp 9538   ^cexp 10396   abscabs 10874    gcd cgcd 11802    ^c ccxp 13117   logb clogb 13199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831  ax-pre-suploc 7832  ax-addf 7833  ax-mulf 7834
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-disj 3939  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-of 6022  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-2o 6354  df-oadd 6357  df-er 6469  df-map 6584  df-pm 6585  df-en 6675  df-dom 6676  df-fin 6677  df-sup 6916  df-inf 6917  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-xneg 9657  df-xadd 9658  df-ioo 9774  df-ico 9776  df-icc 9777  df-fz 9891  df-fzo 10020  df-fl 10147  df-mod 10200  df-seqfrec 10323  df-exp 10397  df-fac 10577  df-bc 10599  df-ihash 10627  df-shft 10692  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228  df-ef 11522  df-e 11523  df-dvds 11661  df-gcd 11803  df-prm 11956  df-rest 12292  df-topgen 12311  df-psmet 12326  df-xmet 12327  df-met 12328  df-bl 12329  df-mopn 12330  df-top 12335  df-topon 12348  df-bases 12380  df-ntr 12435  df-cn 12527  df-cnp 12528  df-tx 12592  df-cncf 12897  df-limced 12964  df-dvap 12965  df-relog 13118  df-rpcxp 13119  df-logb 13200
This theorem is referenced by:  2logb9irr  13227  logbprmirr  13228
  Copyright terms: Public domain W3C validator