ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  logbgcd1irr Unicode version

Theorem logbgcd1irr 13525
Description: The logarithm of an integer greater than 1 to an integer base greater than 1 is not rational if the argument and the base are relatively prime. For example,  ( 2 logb  9 )  e.  ( RR  \  QQ ). (Contributed by AV, 29-Dec-2022.)
Assertion
Ref Expression
logbgcd1irr  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  ( RR  \  QQ ) )

Proof of Theorem logbgcd1irr
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluz2nn 9504 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  NN )
21nnrpd 9630 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  RR+ )
323ad2ant2 1009 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  B  e.  RR+ )
4 1red 7914 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  e.  RR )
5 eluzelre 9476 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  RR )
6 eluz2gt1 9540 . . . . 5  |-  ( B  e.  ( ZZ>= `  2
)  ->  1  <  B )
74, 5, 6gtapd 8535 . . . 4  |-  ( B  e.  ( ZZ>= `  2
)  ->  B #  1
)
873ad2ant2 1009 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  B #  1 )
9 eluz2nn 9504 . . . . 5  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  NN )
109nnrpd 9630 . . . 4  |-  ( X  e.  ( ZZ>= `  2
)  ->  X  e.  RR+ )
11103ad2ant1 1008 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  X  e.  RR+ )
12 rplogbcl 13504 . . 3  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B logb  X )  e.  RR )
133, 8, 11, 12syl3anc 1228 . 2  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  RR )
14 eluz2gt1 9540 . . . . . . . . . 10  |-  ( X  e.  ( ZZ>= `  2
)  ->  1  <  X )
1514adantr 274 . . . . . . . . 9  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  1  <  X )
169adantr 274 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  X  e.  NN )
1716nnrpd 9630 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  X  e.  RR+ )
181adantl 275 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  NN )
1918nnrpd 9630 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  RR+ )
206adantl 275 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  1  <  B )
21 logbgt0b 13524 . . . . . . . . . 10  |-  ( ( X  e.  RR+  /\  ( B  e.  RR+  /\  1  <  B ) )  -> 
( 0  <  ( B logb 
X )  <->  1  <  X ) )
2217, 19, 20, 21syl12anc 1226 . . . . . . . . 9  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( 0  <  ( B logb  X )  <->  1  <  X ) )
2315, 22mpbird 166 . . . . . . . 8  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  0  <  ( B logb  X ) )
2423anim1ci 339 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( B logb  X )  e.  QQ )  ->  (
( B logb  X )  e.  QQ  /\  0  < 
( B logb  X ) ) )
25 elpq 9586 . . . . . . 7  |-  ( ( ( B logb  X )  e.  QQ  /\  0  < 
( B logb  X ) )  ->  E. m  e.  NN  E. n  e.  NN  ( B logb 
X )  =  ( m  /  n ) )
2624, 25syl 14 . . . . . 6  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( B logb  X )  e.  QQ )  ->  E. m  e.  NN  E. n  e.  NN  ( B logb  X )  =  ( m  /  n ) )
2726ex 114 . . . . 5  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( B logb 
X )  e.  QQ  ->  E. m  e.  NN  E. n  e.  NN  ( B logb 
X )  =  ( m  /  n ) ) )
28 oveq2 5850 . . . . . . . . . 10  |-  ( ( m  /  n )  =  ( B logb  X )  ->  ( B  ^c  ( m  /  n ) )  =  ( B  ^c 
( B logb  X ) ) )
2928eqcoms 2168 . . . . . . . . 9  |-  ( ( B logb  X )  =  ( m  /  n )  ->  ( B  ^c  ( m  /  n ) )  =  ( B  ^c 
( B logb  X ) ) )
307adantl 275 . . . . . . . . . . 11  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B #  1
)
31 rpcxplogb 13522 . . . . . . . . . . 11  |-  ( ( B  e.  RR+  /\  B #  1  /\  X  e.  RR+ )  ->  ( B  ^c  ( B logb  X ) )  =  X )
3219, 30, 17, 31syl3anc 1228 . . . . . . . . . 10  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( B  ^c  ( B logb  X
) )  =  X )
3332adantr 274 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( B logb  X
) )  =  X )
3429, 33sylan9eqr 2221 . . . . . . . 8  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B logb  X )  =  ( m  /  n
) )  ->  ( B  ^c  ( m  /  n ) )  =  X )
3534ex 114 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B logb 
X )  =  ( m  /  n )  ->  ( B  ^c  ( m  /  n ) )  =  X ) )
36 oveq1 5849 . . . . . . . 8  |-  ( ( B  ^c  ( m  /  n ) )  =  X  -> 
( ( B  ^c  ( m  /  n ) ) ^
n )  =  ( X ^ n ) )
3719adantr 274 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  B  e.  RR+ )
38 nnrp 9599 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR+ )
3938ad2antrl 482 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  RR+ )
40 nnrp 9599 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  RR+ )
4140ad2antll 483 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  RR+ )
4239, 41rpdivcld 9650 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( m  /  n )  e.  RR+ )
4342rpred 9632 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( m  /  n )  e.  RR )
44 nncn 8865 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  CC )
4544ad2antll 483 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  CC )
4637, 43, 45cxpmuld 13496 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( ( B  ^c  ( m  /  n ) )  ^c  n ) )
4739rpcnd 9634 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  CC )
4841rpap0d 9638 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n #  0
)
4947, 45, 48divcanap1d 8687 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
m  /  n )  x.  n )  =  m )
5049oveq2d 5858 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( B  ^c  m ) )
511ad2antlr 481 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  B  e.  NN )
52 nnz 9210 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  m  e.  ZZ )
5352ad2antrl 482 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  m  e.  ZZ )
54 cxpexpnn 13457 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  m  e.  ZZ )  ->  ( B  ^c 
m )  =  ( B ^ m ) )
5551, 53, 54syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  m )  =  ( B ^
m ) )
5650, 55eqtrd 2198 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( (
m  /  n )  x.  n ) )  =  ( B ^
m ) )
5737, 43rpcxpcld 13492 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  ^c  ( m  /  n ) )  e.  RR+ )
58 nnz 9210 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  n  e.  ZZ )
5958ad2antll 483 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  n  e.  ZZ )
60 cxpexprp 13456 . . . . . . . . . . . 12  |-  ( ( ( B  ^c 
( m  /  n
) )  e.  RR+  /\  n  e.  ZZ )  ->  ( ( B  ^c  ( m  /  n ) )  ^c  n )  =  ( ( B  ^c  ( m  /  n ) ) ^ n ) )
6157, 59, 60syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) )  ^c  n )  =  ( ( B  ^c  ( m  /  n ) ) ^ n ) )
6246, 56, 613eqtr3rd 2207 . . . . . . . . . 10  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) ) ^ n )  =  ( B ^ m
) )
6362eqeq1d 2174 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B  ^c 
( m  /  n
) ) ^ n
)  =  ( X ^ n )  <->  ( B ^ m )  =  ( X ^ n
) ) )
64 simpr 109 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  n  e.  NN )
65 rplpwr 11960 . . . . . . . . . . . . 13  |-  ( ( X  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
( X  gcd  B
)  =  1  -> 
( ( X ^
n )  gcd  B
)  =  1 ) )
6616, 18, 64, 65syl2an3an 1288 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  ( ( X ^ n )  gcd 
B )  =  1 ) )
67 oveq1 5849 . . . . . . . . . . . . . . . . . 18  |-  ( ( X ^ n )  =  ( B ^
m )  ->  (
( X ^ n
)  gcd  B )  =  ( ( B ^ m )  gcd 
B ) )
6867eqeq1d 2174 . . . . . . . . . . . . . . . . 17  |-  ( ( X ^ n )  =  ( B ^
m )  ->  (
( ( X ^
n )  gcd  B
)  =  1  <->  (
( B ^ m
)  gcd  B )  =  1 ) )
6968eqcoms 2168 . . . . . . . . . . . . . . . 16  |-  ( ( B ^ m )  =  ( X ^
n )  ->  (
( ( X ^
n )  gcd  B
)  =  1  <->  (
( B ^ m
)  gcd  B )  =  1 ) )
7069adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( X ^ n )  gcd 
B )  =  1  <-> 
( ( B ^
m )  gcd  B
)  =  1 ) )
71 eluzelz 9475 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  e.  ZZ )
7271adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  B  e.  ZZ )
73 simpl 108 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  m  e.  NN )
74 rpexp 12085 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  ZZ  /\  B  e.  ZZ  /\  m  e.  NN )  ->  (
( ( B ^
m )  gcd  B
)  =  1  <->  ( B  gcd  B )  =  1 ) )
7572, 72, 73, 74syl2an3an 1288 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B ^ m
)  gcd  B )  =  1  <->  ( B  gcd  B )  =  1 ) )
76 gcdid 11919 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  ZZ  ->  ( B  gcd  B )  =  ( abs `  B
) )
7771, 76syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  gcd  B )  =  ( abs `  B ) )
78 nnnn0 9121 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  NN  ->  B  e.  NN0 )
79 nn0ge0 9139 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  e.  NN0  ->  0  <_  B )
801, 78, 793syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( B  e.  ( ZZ>= `  2
)  ->  0  <_  B )
815, 80absidd 11109 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( abs `  B )  =  B )
8277, 81eqtrd 2198 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  gcd  B )  =  B )
8382eqeq1d 2174 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( ( B  gcd  B )  =  1  <->  B  =  1
) )
8483ad2antlr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  gcd  B )  =  1  <->  B  =  1
) )
854, 6gtned 8011 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  e.  ( ZZ>= `  2
)  ->  B  =/=  1 )
86 eqneqall 2346 . . . . . . . . . . . . . . . . . . . 20  |-  ( B  =  1  ->  ( B  =/=  1  -> F.  ) )
8785, 86syl5com 29 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  ( ZZ>= `  2
)  ->  ( B  =  1  -> F.  ) )
8887ad2antlr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( B  =  1  -> F.  ) )
8984, 88sylbid 149 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  gcd  B )  =  1  -> F.  )
)
9075, 89sylbid 149 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B ^ m
)  gcd  B )  =  1  -> F.  ) )
9190adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( B ^ m )  gcd 
B )  =  1  -> F.  ) )
9270, 91sylbid 149 . . . . . . . . . . . . . 14  |-  ( ( ( ( X  e.  ( ZZ>= `  2 )  /\  B  e.  ( ZZ>=
`  2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  /\  ( B ^ m )  =  ( X ^
n ) )  -> 
( ( ( X ^ n )  gcd 
B )  =  1  -> F.  ) )
9392ex 114 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B ^ m )  =  ( X ^ n
)  ->  ( (
( X ^ n
)  gcd  B )  =  1  -> F.  ) ) )
9493com23 78 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( X ^ n
)  gcd  B )  =  1  ->  (
( B ^ m
)  =  ( X ^ n )  -> F.  ) ) )
9566, 94syld 45 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  ( ( B ^ m )  =  ( X ^ n
)  -> F.  )
) )
96 dfnot 1361 . . . . . . . . . . 11  |-  ( -.  ( B ^ m
)  =  ( X ^ n )  <->  ( ( B ^ m )  =  ( X ^ n
)  -> F.  )
)
9795, 96syl6ibr 161 . . . . . . . . . 10  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( X  gcd  B )  =  1  ->  -.  ( B ^ m )  =  ( X ^ n
) ) )
9897con2d 614 . . . . . . . . 9  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B ^ m )  =  ( X ^ n
)  ->  -.  ( X  gcd  B )  =  1 ) )
9963, 98sylbid 149 . . . . . . . 8  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( (
( B  ^c 
( m  /  n
) ) ^ n
)  =  ( X ^ n )  ->  -.  ( X  gcd  B
)  =  1 ) )
10036, 99syl5 32 . . . . . . 7  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B  ^c  ( m  /  n ) )  =  X  ->  -.  ( X  gcd  B )  =  1 ) )
10135, 100syld 45 . . . . . 6  |-  ( ( ( X  e.  (
ZZ>= `  2 )  /\  B  e.  ( ZZ>= ` 
2 ) )  /\  ( m  e.  NN  /\  n  e.  NN ) )  ->  ( ( B logb 
X )  =  ( m  /  n )  ->  -.  ( X  gcd  B )  =  1 ) )
102101rexlimdvva 2591 . . . . 5  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( E. m  e.  NN  E. n  e.  NN  ( B logb  X )  =  ( m  /  n )  ->  -.  ( X  gcd  B )  =  1 ) )
10327, 102syld 45 . . . 4  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( B logb 
X )  e.  QQ  ->  -.  ( X  gcd  B )  =  1 ) )
104103con2d 614 . . 3  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )
)  ->  ( ( X  gcd  B )  =  1  ->  -.  ( B logb 
X )  e.  QQ ) )
1051043impia 1190 . 2  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  -.  ( B logb  X
)  e.  QQ )
10613, 105eldifd 3126 1  |-  ( ( X  e.  ( ZZ>= ` 
2 )  /\  B  e.  ( ZZ>= `  2 )  /\  ( X  gcd  B
)  =  1 )  ->  ( B logb  X )  e.  ( RR  \  QQ ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343   F. wfal 1348    e. wcel 2136    =/= wne 2336   E.wrex 2445    \ cdif 3113   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    x. cmul 7758    < clt 7933    <_ cle 7934   # cap 8479    / cdiv 8568   NNcn 8857   2c2 8908   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   QQcq 9557   RR+crp 9589   ^cexp 10454   abscabs 10939    gcd cgcd 11875    ^c ccxp 13418   logb clogb 13501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873  ax-pre-suploc 7874  ax-addf 7875  ax-mulf 7876
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-disj 3960  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-of 6050  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-2o 6385  df-oadd 6388  df-er 6501  df-map 6616  df-pm 6617  df-en 6707  df-dom 6708  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-xneg 9708  df-xadd 9709  df-ioo 9828  df-ico 9830  df-icc 9831  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-bc 10661  df-ihash 10689  df-shft 10757  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-clim 11220  df-sumdc 11295  df-ef 11589  df-e 11590  df-dvds 11728  df-gcd 11876  df-prm 12040  df-rest 12558  df-topgen 12577  df-psmet 12627  df-xmet 12628  df-met 12629  df-bl 12630  df-mopn 12631  df-top 12636  df-topon 12649  df-bases 12681  df-ntr 12736  df-cn 12828  df-cnp 12829  df-tx 12893  df-cncf 13198  df-limced 13265  df-dvap 13266  df-relog 13419  df-rpcxp 13420  df-logb 13502
This theorem is referenced by:  2logb9irr  13529  logbprmirr  13530
  Copyright terms: Public domain W3C validator