ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vfermltl Unicode version

Theorem vfermltl 12769
Description: Variant of Fermat's little theorem if  A is not a multiple of  P, see theorem 5.18 in [ApostolNT] p. 113. (Contributed by AV, 21-Aug-2020.) (Proof shortened by AV, 5-Sep-2020.)
Assertion
Ref Expression
vfermltl  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  1 ) )  mod  P )  =  1 )

Proof of Theorem vfermltl
StepHypRef Expression
1 phiprm 12740 . . . . . 6  |-  ( P  e.  Prime  ->  ( phi `  P )  =  ( P  -  1 ) )
21eqcomd 2235 . . . . 5  |-  ( P  e.  Prime  ->  ( P  -  1 )  =  ( phi `  P
) )
323ad2ant1 1042 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  -  1 )  =  ( phi `  P ) )
43oveq2d 6016 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A ^ ( P  - 
1 ) )  =  ( A ^ ( phi `  P ) ) )
54oveq1d 6015 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  1 ) )  mod  P )  =  ( ( A ^ ( phi `  P ) )  mod 
P ) )
6 prmnn 12627 . . . 4  |-  ( P  e.  Prime  ->  P  e.  NN )
763ad2ant1 1042 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  NN )
8 simp2 1022 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  A  e.  ZZ )
9 prmz 12628 . . . . . . 7  |-  ( P  e.  Prime  ->  P  e.  ZZ )
109anim1ci 341 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A  e.  ZZ  /\  P  e.  ZZ ) )
11103adant3 1041 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  e.  ZZ  /\  P  e.  ZZ ) )
12 gcdcom 12489 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( A  gcd  P
)  =  ( P  gcd  A ) )
1311, 12syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  ( P  gcd  A
) )
14 coprm 12661 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
1514biimp3a 1379 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( P  gcd  A )  =  1 )
1613, 15eqtrd 2262 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  ( A  gcd  P )  =  1 )
17 eulerth 12750 . . 3  |-  ( ( P  e.  NN  /\  A  e.  ZZ  /\  ( A  gcd  P )  =  1 )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
187, 8, 16, 17syl3anc 1271 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( phi `  P ) )  mod  P )  =  ( 1  mod  P
) )
1993ad2ant1 1042 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  ZZ )
20 zq 9817 . . . 4  |-  ( P  e.  ZZ  ->  P  e.  QQ )
2119, 20syl 14 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  P  e.  QQ )
22 prmgt1 12649 . . . 4  |-  ( P  e.  Prime  ->  1  < 
P )
23223ad2ant1 1042 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  1  <  P )
24 q1mod 10573 . . 3  |-  ( ( P  e.  QQ  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
2521, 23, 24syl2anc 411 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
1  mod  P )  =  1 )
265, 18, 253eqtrd 2266 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( A ^ ( P  -  1 ) )  mod  P )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   1c1 7996    < clt 8177    - cmin 8313   NNcn 9106   ZZcz 9442   QQcq 9810    mod cmo 10539   ^cexp 10755    || cdvds 12293    gcd cgcd 12469   Primecprime 12624   phicphi 12726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-2o 6561  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057  df-dvds 12294  df-gcd 12470  df-prm 12625  df-phi 12728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator