ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  powm2modprm Unicode version

Theorem powm2modprm 12770
Description: If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
powm2modprm  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  1 ) )

Proof of Theorem powm2modprm
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  Prime )
2 simpr 110 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  A  e.  ZZ )
32adantr 276 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  A  e.  ZZ )
4 m1dvdsndvds 12766 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  -.  P  ||  A ) )
54imp 124 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  -.  P  ||  A )
6 eqid 2229 . . . . . 6  |-  ( ( A ^ ( P  -  2 ) )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
)
76modprminv 12767 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 ) )
8 simpr 110 . . . . . 6  |-  ( ( ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 )  ->  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  1 )
98eqcomd 2235 . . . . 5  |-  ( ( ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 )  ->  1  =  ( ( A  x.  (
( A ^ ( P  -  2 ) )  mod  P ) )  mod  P ) )
107, 9syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  1  =  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P ) )
111, 3, 5, 10syl3anc 1271 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  1  =  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
12 modprm1div 12765 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A  mod  P
)  =  1  <->  P  ||  ( A  -  1 ) ) )
1312biimpar 297 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A  mod  P )  =  1 )
1413oveq1d 6015 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A  mod  P )  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  =  ( 1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) ) )
1514oveq1d 6015 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A  mod  P
)  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( 1  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
16 zq 9817 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  QQ )
173, 16syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  A  e.  QQ )
18 prmm2nn0 12650 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( P  -  2 )  e. 
NN0 )
1918anim1ci 341 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A  e.  ZZ  /\  ( P  -  2 )  e.  NN0 ) )
2019adantr 276 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A  e.  ZZ  /\  ( P  -  2 )  e. 
NN0 ) )
21 zexpcl 10771 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
2220, 21syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A ^ ( P  - 
2 ) )  e.  ZZ )
23 prmnn 12627 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
2423adantr 276 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  P  e.  NN )
2524adantr 276 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  NN )
2622, 25zmodcld 10562 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  e.  NN0 )
2726nn0zd 9563 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  e.  ZZ )
2825nnzd 9564 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  ZZ )
29 zq 9817 . . . . . 6  |-  ( P  e.  ZZ  ->  P  e.  QQ )
3028, 29syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  QQ )
3125nngt0d 9150 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  0  <  P )
32 modqmulmod 10606 . . . . 5  |-  ( ( ( A  e.  QQ  /\  ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ZZ )  /\  ( P  e.  QQ  /\  0  < 
P ) )  -> 
( ( ( A  mod  P )  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  ( ( A  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P ) )
3317, 27, 30, 31, 32syl22anc 1272 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A  mod  P
)  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
3419, 21syl 14 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A ^ ( P  - 
2 ) )  e.  ZZ )
3534, 24zmodcld 10562 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  e.  NN0 )
3635nn0cnd 9420 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  e.  CC )
3736mulid2d 8161 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  =  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )
3837oveq1d 6015 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( 1  x.  (
( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( ( A ^ ( P  -  2 ) )  mod  P )  mod 
P ) )
3938adantr 276 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
) )
40 zq 9817 . . . . . . 7  |-  ( ( A ^ ( P  -  2 ) )  e.  ZZ  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
4122, 40syl 14 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
42 modqabs2 10575 . . . . . 6  |-  ( ( ( A ^ ( P  -  2 ) )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( ( A ^
( P  -  2 ) )  mod  P
)  mod  P )  =  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )
4341, 30, 31, 42syl3anc 1271 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A ^ ( P  -  2 ) )  mod  P )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
) )
4439, 43eqtrd 2262 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
) )
4515, 33, 443eqtr3d 2270 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
4611, 45eqtr2d 2263 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  =  1 )
4746ex 115 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082  (class class class)co 6000   0cc0 7995   1c1 7996    x. cmul 8000    < clt 8177    - cmin 8313   NNcn 9106   2c2 9157   NN0cn0 9365   ZZcz 9442   QQcq 9810   ...cfz 10200    mod cmo 10539   ^cexp 10755    || cdvds 12293   Primecprime 12624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-2o 6561  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057  df-dvds 12294  df-gcd 12470  df-prm 12625  df-phi 12728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator