ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  powm2modprm Unicode version

Theorem powm2modprm 12421
Description: If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
powm2modprm  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  1 ) )

Proof of Theorem powm2modprm
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  Prime )
2 simpr 110 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  A  e.  ZZ )
32adantr 276 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  A  e.  ZZ )
4 m1dvdsndvds 12417 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  -.  P  ||  A ) )
54imp 124 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  -.  P  ||  A )
6 eqid 2196 . . . . . 6  |-  ( ( A ^ ( P  -  2 ) )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
)
76modprminv 12418 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 ) )
8 simpr 110 . . . . . 6  |-  ( ( ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 )  ->  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  1 )
98eqcomd 2202 . . . . 5  |-  ( ( ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 )  ->  1  =  ( ( A  x.  (
( A ^ ( P  -  2 ) )  mod  P ) )  mod  P ) )
107, 9syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  1  =  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P ) )
111, 3, 5, 10syl3anc 1249 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  1  =  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
12 modprm1div 12416 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A  mod  P
)  =  1  <->  P  ||  ( A  -  1 ) ) )
1312biimpar 297 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A  mod  P )  =  1 )
1413oveq1d 5937 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A  mod  P )  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  =  ( 1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) ) )
1514oveq1d 5937 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A  mod  P
)  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( 1  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
16 zq 9700 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  QQ )
173, 16syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  A  e.  QQ )
18 prmm2nn0 12301 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( P  -  2 )  e. 
NN0 )
1918anim1ci 341 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A  e.  ZZ  /\  ( P  -  2 )  e.  NN0 ) )
2019adantr 276 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A  e.  ZZ  /\  ( P  -  2 )  e. 
NN0 ) )
21 zexpcl 10646 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
2220, 21syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A ^ ( P  - 
2 ) )  e.  ZZ )
23 prmnn 12278 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
2423adantr 276 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  P  e.  NN )
2524adantr 276 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  NN )
2622, 25zmodcld 10437 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  e.  NN0 )
2726nn0zd 9446 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  e.  ZZ )
2825nnzd 9447 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  ZZ )
29 zq 9700 . . . . . 6  |-  ( P  e.  ZZ  ->  P  e.  QQ )
3028, 29syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  QQ )
3125nngt0d 9034 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  0  <  P )
32 modqmulmod 10481 . . . . 5  |-  ( ( ( A  e.  QQ  /\  ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ZZ )  /\  ( P  e.  QQ  /\  0  < 
P ) )  -> 
( ( ( A  mod  P )  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  ( ( A  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P ) )
3317, 27, 30, 31, 32syl22anc 1250 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A  mod  P
)  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
3419, 21syl 14 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A ^ ( P  - 
2 ) )  e.  ZZ )
3534, 24zmodcld 10437 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  e.  NN0 )
3635nn0cnd 9304 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  e.  CC )
3736mulid2d 8045 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  =  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )
3837oveq1d 5937 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( 1  x.  (
( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( ( A ^ ( P  -  2 ) )  mod  P )  mod 
P ) )
3938adantr 276 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
) )
40 zq 9700 . . . . . . 7  |-  ( ( A ^ ( P  -  2 ) )  e.  ZZ  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
4122, 40syl 14 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
42 modqabs2 10450 . . . . . 6  |-  ( ( ( A ^ ( P  -  2 ) )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( ( A ^
( P  -  2 ) )  mod  P
)  mod  P )  =  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )
4341, 30, 31, 42syl3anc 1249 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A ^ ( P  -  2 ) )  mod  P )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
) )
4439, 43eqtrd 2229 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
) )
4515, 33, 443eqtr3d 2237 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
4611, 45eqtr2d 2230 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  =  1 )
4746ex 115 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   0cc0 7879   1c1 7880    x. cmul 7884    < clt 8061    - cmin 8197   NNcn 8990   2c2 9041   NN0cn0 9249   ZZcz 9326   QQcq 9693   ...cfz 10083    mod cmo 10414   ^cexp 10630    || cdvds 11952   Primecprime 12275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-2o 6475  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716  df-dvds 11953  df-gcd 12121  df-prm 12276  df-phi 12379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator