ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  powm2modprm Unicode version

Theorem powm2modprm 12287
Description: If an integer minus 1 is divisible by a prime number, then the integer to the power of the prime number minus 2 is 1 modulo the prime number. (Contributed by Alexander van der Vekens, 30-Aug-2018.)
Assertion
Ref Expression
powm2modprm  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  1 ) )

Proof of Theorem powm2modprm
StepHypRef Expression
1 simpll 527 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  Prime )
2 simpr 110 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  A  e.  ZZ )
32adantr 276 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  A  e.  ZZ )
4 m1dvdsndvds 12283 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  -.  P  ||  A ) )
54imp 124 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  -.  P  ||  A )
6 eqid 2189 . . . . . 6  |-  ( ( A ^ ( P  -  2 ) )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
)
76modprminv 12284 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  (
( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 ) )
8 simpr 110 . . . . . 6  |-  ( ( ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 )  ->  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  1 )
98eqcomd 2195 . . . . 5  |-  ( ( ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ( 1 ... ( P  - 
1 ) )  /\  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  1 )  ->  1  =  ( ( A  x.  (
( A ^ ( P  -  2 ) )  mod  P ) )  mod  P ) )
107, 9syl 14 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  -.  P  ||  A )  ->  1  =  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P ) )
111, 3, 5, 10syl3anc 1249 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  1  =  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
12 modprm1div 12282 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A  mod  P
)  =  1  <->  P  ||  ( A  -  1 ) ) )
1312biimpar 297 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A  mod  P )  =  1 )
1413oveq1d 5912 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A  mod  P )  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  =  ( 1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) ) )
1514oveq1d 5912 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A  mod  P
)  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( 1  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
16 zq 9658 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  QQ )
173, 16syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  A  e.  QQ )
18 prmm2nn0 12168 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  ( P  -  2 )  e. 
NN0 )
1918anim1ci 341 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A  e.  ZZ  /\  ( P  -  2 )  e.  NN0 ) )
2019adantr 276 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A  e.  ZZ  /\  ( P  -  2 )  e. 
NN0 ) )
21 zexpcl 10569 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  ( P  -  2
)  e.  NN0 )  ->  ( A ^ ( P  -  2 ) )  e.  ZZ )
2220, 21syl 14 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A ^ ( P  - 
2 ) )  e.  ZZ )
23 prmnn 12145 . . . . . . . . 9  |-  ( P  e.  Prime  ->  P  e.  NN )
2423adantr 276 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  P  e.  NN )
2524adantr 276 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  NN )
2622, 25zmodcld 10378 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  e.  NN0 )
2726nn0zd 9404 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  e.  ZZ )
2825nnzd 9405 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  ZZ )
29 zq 9658 . . . . . 6  |-  ( P  e.  ZZ  ->  P  e.  QQ )
3028, 29syl 14 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  P  e.  QQ )
3125nngt0d 8994 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  0  <  P )
32 modqmulmod 10422 . . . . 5  |-  ( ( ( A  e.  QQ  /\  ( ( A ^
( P  -  2 ) )  mod  P
)  e.  ZZ )  /\  ( P  e.  QQ  /\  0  < 
P ) )  -> 
( ( ( A  mod  P )  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
)  =  ( ( A  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P ) )
3317, 27, 30, 31, 32syl22anc 1250 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A  mod  P
)  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( A  x.  ( ( A ^
( P  -  2 ) )  mod  P
) )  mod  P
) )
3419, 21syl 14 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( A ^ ( P  - 
2 ) )  e.  ZZ )
3534, 24zmodcld 10378 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  e.  NN0 )
3635nn0cnd 9262 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  e.  CC )
3736mulid2d 8007 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  =  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )
3837oveq1d 5912 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  (
( 1  x.  (
( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( ( A ^ ( P  -  2 ) )  mod  P )  mod 
P ) )
3938adantr 276 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( ( A ^ ( P  - 
2 ) )  mod 
P )  mod  P
) )
40 zq 9658 . . . . . . 7  |-  ( ( A ^ ( P  -  2 ) )  e.  ZZ  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
4122, 40syl 14 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( A ^ ( P  - 
2 ) )  e.  QQ )
42 modqabs2 10391 . . . . . 6  |-  ( ( ( A ^ ( P  -  2 ) )  e.  QQ  /\  P  e.  QQ  /\  0  <  P )  ->  (
( ( A ^
( P  -  2 ) )  mod  P
)  mod  P )  =  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )
4341, 30, 31, 42syl3anc 1249 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
( A ^ ( P  -  2 ) )  mod  P )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
) )
4439, 43eqtrd 2222 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( (
1  x.  ( ( A ^ ( P  -  2 ) )  mod  P ) )  mod  P )  =  ( ( A ^
( P  -  2 ) )  mod  P
) )
4515, 33, 443eqtr3d 2230 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A  x.  ( ( A ^ ( P  - 
2 ) )  mod 
P ) )  mod 
P )  =  ( ( A ^ ( P  -  2 ) )  mod  P ) )
4611, 45eqtr2d 2223 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ )  /\  P  ||  ( A  -  1 ) )  ->  ( ( A ^ ( P  - 
2 ) )  mod 
P )  =  1 )
4746ex 115 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  ||  ( A  - 
1 )  ->  (
( A ^ ( P  -  2 ) )  mod  P )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   class class class wbr 4018  (class class class)co 5897   0cc0 7842   1c1 7843    x. cmul 7847    < clt 8023    - cmin 8159   NNcn 8950   2c2 9001   NN0cn0 9207   ZZcz 9284   QQcq 9651   ...cfz 10040    mod cmo 10355   ^cexp 10553    || cdvds 11829   Primecprime 12142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-isom 5244  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-irdg 6396  df-frec 6417  df-1o 6442  df-2o 6443  df-oadd 6446  df-er 6560  df-en 6768  df-dom 6769  df-fin 6770  df-sup 7014  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-ihash 10791  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-clim 11322  df-proddc 11594  df-dvds 11830  df-gcd 11979  df-prm 12143  df-phi 12246
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator