ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax10 Unicode version

Theorem ax10 1705
Description: Rederivation of ax-10 1493 from original version ax-10o 1704. See Theorem ax10o 1703 for the derivation of ax-10o 1704 from ax-10 1493.

This theorem should not be referenced in any proof. Instead, use ax-10 1493 above so that uses of ax-10 1493 can be more easily identified. (Contributed by NM, 16-May-2008.) (New usage is discouraged.)

Assertion
Ref Expression
ax10  |-  ( A. x  x  =  y  ->  A. y  y  =  x )

Proof of Theorem ax10
StepHypRef Expression
1 ax-10o 1704 . . 3  |-  ( A. x  x  =  y  ->  ( A. x  x  =  y  ->  A. y  x  =  y )
)
21pm2.43i 49 . 2  |-  ( A. x  x  =  y  ->  A. y  x  =  y )
3 equcomi 1692 . . 3  |-  ( x  =  y  ->  y  =  x )
43alimi 1443 . 2  |-  ( A. y  x  =  y  ->  A. y  y  =  x )
52, 4syl 14 1  |-  ( A. x  x  =  y  ->  A. y  y  =  x )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-5 1435  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-17 1514  ax-i9 1518  ax-10o 1704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator