![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.43i | Unicode version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43i.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm2.43i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm2.43i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 |
This theorem is referenced by: sylc 62 impbid 128 ibi 175 anidms 392 pm2.13dc 853 hbequid 1476 equidqe 1495 equid 1660 ax10 1678 hbae 1679 vtoclgaf 2722 vtocl2gaf 2724 vtocl3gaf 2726 ifmdc 3475 elinti 3746 copsexg 4126 nlimsucg 4441 tfisi 4461 vtoclr 4547 issref 4879 relresfld 5026 f1o2ndf1 6079 tfrlem9 6170 nndi 6336 mulcanpig 7091 lediv2a 8563 seq3id3 10173 resqrexlemdecn 10676 ndvdssub 11475 nn0seqcvgd 11568 fiinopn 12014 xmetunirn 12347 mopnval 12431 ax1hfs 12931 |
Copyright terms: Public domain | W3C validator |