ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.43i Unicode version

Theorem pm2.43i 49
Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.)
Hypothesis
Ref Expression
pm2.43i.1  |-  ( ph  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
pm2.43i  |-  ( ph  ->  ps )

Proof of Theorem pm2.43i
StepHypRef Expression
1 id 19 . 2  |-  ( ph  ->  ph )
2 pm2.43i.1 . 2  |-  ( ph  ->  ( ph  ->  ps ) )
31, 2mpd 13 1  |-  ( ph  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  sylc  62  impbid  129  ibi  176  anidms  397  pm2.13dc  886  hbequid  1524  equidqe  1543  equid  1712  ax10  1728  hbae  1729  vtoclgaf  2825  vtocl2gaf  2827  vtocl3gaf  2829  ifmdc  3597  elinti  3879  copsexg  4273  nlimsucg  4598  tfisi  4619  vtoclr  4707  issref  5048  relresfld  5195  f1o2ndf1  6281  tfrlem9  6372  nndi  6539  mulcanpig  7395  lediv2a  8914  seq3id3  10595  resqrexlemdecn  11156  ndvdssub  12071  nn0seqcvgd  12179  modprm0  12392  fiinopn  14172  xmetunirn  14526  mopnval  14610  plyssc  14885  ax1hfs  15564
  Copyright terms: Public domain W3C validator