![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.43i | Unicode version |
Description: Inference absorbing redundant antecedent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 28-Nov-2008.) |
Ref | Expression |
---|---|
pm2.43i.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
pm2.43i |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | pm2.43i.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpd 13 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: sylc 62 impbid 129 ibi 176 anidms 397 pm2.13dc 886 hbequid 1524 equidqe 1543 equid 1712 ax10 1728 hbae 1729 vtoclgaf 2825 vtocl2gaf 2827 vtocl3gaf 2829 ifmdc 3597 elinti 3879 copsexg 4273 nlimsucg 4598 tfisi 4619 vtoclr 4707 issref 5048 relresfld 5195 f1o2ndf1 6281 tfrlem9 6372 nndi 6539 mulcanpig 7395 lediv2a 8914 seq3id3 10595 resqrexlemdecn 11156 ndvdssub 12071 nn0seqcvgd 12179 modprm0 12392 fiinopn 14172 xmetunirn 14526 mopnval 14610 plyssc 14885 ax1hfs 15564 |
Copyright terms: Public domain | W3C validator |